Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 65, Issue 2


Forensic blood evidence analysis using RNA targets and novel molecular tools

Tyler Counsil / John McKillip
Published Online: 2010-02-21 | DOI: https://doi.org/10.2478/s11756-010-0001-2


In the realm of forensic investigation, messenger RNA (mRNA) is a good source for specimen analysis, owing to tissue-specific expression patterns for many transcripts. Thus, differentiation of bodily fluids collected at a crime scene is possible if the proper target mRNA is identifiable and detectable using molecular methods. With the analysis of menstrual blood evidence, for example, the matrix metalloproteinase (MMP) family of genes encodes proteins involved in extracellular matrix breakdown during tissue remodeling, and in particular MMP11 and MMP7 mRNA have proven useful for forensic blood evidence analysis. Nucleic acid sequence based amplification (NASBA) is a highly sensitive RNA transcription-based amplification method used to detect gene expression. As an emerging real-time technology, NASBA holds promise as a tool to rapidly and sensitively amplify mRNA markers associated with the MMP genes to verify the presence of menstrual blood in a forensic sample, and has a number of advantages compared to reverse transcriptase polymerase chain reaction. The purpose of this review is to overview the current state of mRNA analysis in forensic evidence casework and to highlight areas of research, progress, and development in the near-term future that will lead to reduction of case evidence backlog in crime laboratories in developed countries.

Keywords: RNA; blood; MMP11; NASBA; forensics

  • [1] Bauer M. & Patzelt D. 2002. Evaluation of mRNA markers for the identification of menstrual blood. J. Forensic Sci. 47: 1278–1282. Google Scholar

  • [2] Bauer M. & Patzelt D. 2008. Identification of menstrual blood by real-time RT-PCR: technical improvements and the practical value of negative test results. Forensic Sci. Int. 174: 54–58. http://dx.doi.org/10.1016/j.forsciint.2007.03.016CrossrefWeb of ScienceGoogle Scholar

  • [3] Christensen L.R. 1944. Streptococcal fibrinolysis: a proteolytic reaction due to a serum enzyme activated by streptococcal fibrinolysin. J. Gen. Physiol. 28: 363–383. http://dx.doi.org/10.1085/jgp.28.4.363CrossrefGoogle Scholar

  • [4] Compton J. 1991. Nucleic acid sequence based amplification. Nature 350: 91–92. http://dx.doi.org/10.1038/350091a0CrossrefGoogle Scholar

  • [5] Counterterrorism and Forensic Science Research Unit. 2004. Automating the forensic analysis of nuclear DNA: the FBI’s research and development initiative. Forensic Sci. Commun. 6: 1–4. Google Scholar

  • [6] Dieman B., Van Aarle P. & Sillekens P. 2002. Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol. Biotechnol. 20: 163–179. http://dx.doi.org/10.1385/MB:20:2:163CrossrefGoogle Scholar

  • [7] Ferri G., Bini C., Ceccardi S. & Pellotti S. 2004. Successful identification of two years old menstrual bloodstain by using MMP-11 shorter amplicons. J. Forensic Sci. 49: 1387. Google Scholar

  • [8] Fu L., Tomita A, Wang H., Buchholz D.R. & Shi Y.B. 2006. Transcriptional regulation of the Xenopus laevis stromelysin-3 gene by thyroid hormone is mediated by a DNA element in the first intron. J. Biol. Chem. 281: 16870–16878. http://dx.doi.org/10.1074/jbc.M603041200CrossrefGoogle Scholar

  • [9] Gefrides L. & Welch K. 2005. The Forensic Laboratory Handbook: Procedures and Practice. Humana Press, Totowa, NJ, 312 pp. Google Scholar

  • [10] Genge N.E. 2002. The Forensic Casebook: The Science of Crime Scene Investigation. Ballantine Publishing Group, New York, 332 pp. Google Scholar

  • [11] Gionata L., Van Schijndel H., Van Gemen B., Kramer F.R. & Schoen C.D. 1998. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real time detection of RNA. Nucleic Acids Res. 26: 2150–2155. http://dx.doi.org/10.1093/nar/26.9.2150CrossrefGoogle Scholar

  • [12] Gore H.M., Wakeman C.A., Hull R.M. & McKillip J.L. 2003. Real-time molecular beacon NASBA reveals hblC expression from Bacillus spp. in milk. Biochem. Biophys. Res. Commun. 311: 386–390. http://dx.doi.org/10.1016/j.bbrc.2003.10.016CrossrefGoogle Scholar

  • [13] Gracias K.S. & McKillip J.L. 2007. Nucleic acid sequence based amplification (NASBA) in molecular bacteriology: a procedural guide. J. Rapid Methods Automation Microbiol. 15: 293–307. Web of ScienceGoogle Scholar

  • [14] Grodsky M., Wright K. & Kirk P.L. 1951. Simplified preliminary blood testing: an improved technique and comparative study of methods. J. Crim. Law Criminol. Police Sci. 42: 95–104. http://dx.doi.org/10.2307/1140307CrossrefGoogle Scholar

  • [15] Harbison A. 1992. Lactate dehydrogenase isoenzyme patterns in vaginal injury of a 4-year-old girl. Intl. J. Legal Med. 105: 177–178. http://dx.doi.org/10.1007/BF01625173CrossrefGoogle Scholar

  • [16] Inman K. & Rudin N. 2001. Principles and Practices of Criminalistics: The Profession of Forensic Science. Volume 1. CRC Press, Boca Raton, FL, 392 pp. Google Scholar

  • [17] Juusola J. & Ballantyne J. 2003. Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci. Int. 135: 85–96. http://dx.doi.org/10.1016/S0379-0738(03)00197-XCrossrefGoogle Scholar

  • [18] Juusola J. & Ballantyne J. 2005. Multiplex mRNA profiling for the identification of body fluids. Forensic Sci. Int. 152: 1–12. http://dx.doi.org/10.1016/j.forsciint.2005.02.020CrossrefGoogle Scholar

  • [19] Kamimori G.H., Sirisuth N., Greenblatt D.J. & Eddington N.D. 2000. The influence of the menstrual cycle on triazolam and indocyanine green pharmacokinetics. J. Clin. Pharmacol. 40: 739–744. http://dx.doi.org/10.1177/00912700022009495CrossrefGoogle Scholar

  • [20] Klerks M.M., Leone G., Linder J.L., Schoen C.D. & van den Huevel J. 2001. Rapid and sensitive detection of apple stem pitting virus in apple trees through RNA amplification and probing with fluorescent molecular beacons. Phytopathology 91: 1085–1091. http://dx.doi.org/10.1094/PHYTO.2001.91.11.1085CrossrefGoogle Scholar

  • [21] Lee H.C. & Tirnady F. 2003. Blood Evidence: How DNA is Revolutionizing the Way We Solve Crimes. Perseus Publishing, Cambridge, MA, 256 pp. Google Scholar

  • [22] Levi K., Smedley J. & Towner K.J. 2003. Evaluation of a realtime PCR hybridization assay for rapid detection of Legionella pneumophila in hospital and environmental water samples. Clin. Microbiol. Infect. 9: 754–758. http://dx.doi.org/10.1046/j.1469-0691.2003.00666.xCrossrefGoogle Scholar

  • [23] McKillip J.L. & Drake M.A. 2004. Real-time nucleic acid-based detection methods for pathogenic bacteria in food. J. Food Prot. 67: 823–832. Google Scholar

  • [24] Moore P. 2004. The Forensics Handbook: The Secrets of Crime Scene Investigation. Callistemon Books, Belgrave, Australia, 160 pp. Google Scholar

  • [25] Nussbaumer C., Gharehbaghi-Schnell E. & Korschineck I. 2006. Messenger RNA profiling: a novel method for body fluid identification by Real-Time PCR. Forensic Sci. Int. 157: 181–186. http://dx.doi.org/10.1016/j.forsciint.2005.10.009CrossrefGoogle Scholar

  • [26] Peterson J.L. & Hickman M.J. 2005. Census of publicly funded forensic crime laboratories, 2002. U.S. Department of Justice. Google Scholar

  • [27] Reddy C.A., Beveridge T.J., Breznak J.A., Marzluf G., Schmidt T.M. & Snyder L.R. 2007. Methods for General andMolecular Microbiology. 3rd Edition. ASM Press, Herndon, VA, 1069 pp. Google Scholar

  • [28] Rodriguez-Lazaro D., D’Agostino M., Pla M. & Cook N. 2004. Construction strategy for an internal amplification control for real time diagnostic assays using nucleic acid sequence based amplification: development and clinical application. J. Clin. Microbiol. 42: 5832–5836. http://dx.doi.org/10.1128/JCM.42.12.5832-5836.2004CrossrefGoogle Scholar

  • [29] Scientific Working Group on DNA Analysis Methods (SWGDAM). 2004. Revised validation guidelines. Forensic Sci. Commun. 6: 1–6. Google Scholar

  • [30] Smith S.K. 1998. Angiogenesis, vascular endothelial growth factor and the endometrium. Hum. Reprod. Update 4: 509–519. http://dx.doi.org/10.1093/humupd/4.5.509CrossrefGoogle Scholar

  • [31] Speers D.J. 2006. Clinical applications of molecular biology for infectious diseases. Clin. Biochem. Rev. 27: 39–51. Google Scholar

  • [32] Tokiwa K. 1986. A sequence of tests of minute human blood stains for human origin identification and ABO blood grouping. Int. J. Legal Med. 97: 157–164. Google Scholar

  • [33] Kaitu’u T.J., Shen J., Zhang J, Morison NB & Salamonsen L.A. 2005. Matrix metalloproteinases in endometrial breakdown and repair: functional significance in a mouse model. Biol. Reprod. 73: 672–680. http://dx.doi.org/10.1095/biolreprod.105.042473CrossrefGoogle Scholar

  • [34] Uyttendaele M., Schukkink R., Van Gemen B. & Debevere J. 1994. Identification of Campylobacter jejuni, Campylobacter coli and Campylobacter lari by the nucleic acid amplification system NASBA. J. Appl. Bacteriol. 77: 694–701. Google Scholar

  • [35] Wilson I.G. 1997. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 63: 3741–3751. Google Scholar

  • [36] Wong M.L. & Medrano J.F. 2005. Real time PCR for mRNA quantitation. Biotechniques 39: 1–11. http://dx.doi.org/10.2144/05391BF01CrossrefGoogle Scholar

  • [37] Xu Y. 1993. Capillary electrophoresis. Anal. Chem. 65: 425R. http://dx.doi.org/10.1021/ac00060a612CrossrefGoogle Scholar

  • [38] Zubakov D., Kokshoorn M., Kloosterman A. & Kayser M. 2009. New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year old stains. Int. J. Legal Med. 123: 71–74. http://dx.doi.org/10.1007/s00414-008-0249-zWeb of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2010-02-21

Published in Print: 2010-04-01

Citation Information: Biologia, Volume 65, Issue 2, Pages 175–182, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0001-2.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Asmaa Mohammad Moawad, Hala saied zaghlol, Mervat Hamdy Abdelsalam, Amani Abdelfattah, Dina Sabry, and Adel Atef
Egyptian Journal of Forensic Sciences, 2018, Volume 8, Number 1

Comments (0)

Please log in or register to comment.
Log in