Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 65, Issue 2


Demographic variation of dwarf birch (Betula nana) in communities dominated by Ledum palustre and Vaccinium uliginosum

Wojciech Ejankowski
  • Department of Botany and Hydrobiology, The John Paul II Catholic University of Lublin, Konstantynów 1H, PL-20-708, Lublin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-02-21 | DOI: https://doi.org/10.2478/s11756-010-0007-9


The structure and demographic processes were compared in shrub communities to test the effects of vegetation succession on population growth, fecundity and abundance of the dwarf birch (Betula nana L.), which is a rare and endangered plant species in Poland and a glacial relict in Central Europe. The effects of Ledum palustre L. and Vaccinium uliginosum L. were studied in the Linje nature reserve in Chełmińskie Lake District (northern Poland), in three permanent plots on a peat bog. Vegetative growth and reproduction of B. nana were lower in plant communities dominated by L. palustre and V. uliginosum, than in a reference site. Fecundity was also lower, despite the fact that the percentage share of potentially fertile age groups was similar in all study sites. Mortality of ramets was independent of vegetation, both for juvenile and mature stages. The results confirm that B. nana is intolerant of shade, and it is more abundant in vegetation without competitors. Light limitation can lead to its decline, primarily by a decrease in vegetative growth. Sexual reproduction may be negatively affected by shade, but it plays only small role in population growth. Butterfly larvae can destroy inflorescences, and thus contribute to low effectiveness of sexual reproduction. Increasing density of shrubs and trees in peat bogs can reduce the abundance of dwarf birch, and can lead to the extinction of its local populations.

Keywords: clonal plant; competition; glacial relict; peat bog; vegetative growth

  • [1] Brag O., Lindsay R., Risager M., Silvius M. & Zingstra H. 2003 (eds). Strategy and action plan for mire and peatland conservation in Central Europe. Wetl. Intern. Publ. 18: 1–94. Google Scholar

  • [2] Breshears D.D., Nyhan J.W., Heil C.E. & Wilcox B.P. 1998. Effects of woody plants on microclimate in a semiarid woodland: soil temperature and evaporation in canopy and intercanopy patches. Int. J. Plant Sci. 159: 1010–1017. http://dx.doi.org/10.1086/314083CrossrefGoogle Scholar

  • [3] Breshears D.D., Rich P.M., Barnes F.J. & Campbell K. 1997. Overstory-imposed heterogeneity in solar radiation and soil moisture in a semiarid woodland. Ecol. Appl. 7: 1201–1215. http://dx.doi.org/10.1890/1051-0761(1997)007[1201:OIHISR]2.0.CO;2CrossrefGoogle Scholar

  • [4] Bret-Harte M.S., Shaver G.G., Zoerner J.P., Johnstone J.F., Wagner J.L., Chavez A.S., Gunkelman IV R.F., Lippert S.C. & Laundre J.A. 2001. Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82: 18–32. Google Scholar

  • [5] Buszko J. 1990. Struktura i dynamika zasięgów motyli minujących (Lepidoptera) na obszarze Doliny Dolnej Wisłly. Wyd. UMK, Toruń, 166 pp. Google Scholar

  • [6] de Groot W.J., Thomas P.A. & Wein R.W. 1997. Biological flora of the British Isles Betula nana L. and Betula glandulosa Michx. J. Ecol. 85: 241–264. http://dx.doi.org/10.2307/2960655CrossrefGoogle Scholar

  • [7] Ebert T.A. & Ebert C.A. 1989. A method for studying vegetation dynamics when there are no obvious individuals: Virtual population analysis applied to the tundra shrub Betula nana L. Vegetatio 85: 33–44. http://dx.doi.org/10.1007/BF00042253CrossrefGoogle Scholar

  • [8] Ejankowski W. & Kunz M. 2006. Reconstruction of vegetation dynamics in “Linje” peat-bog (N Poland) using remote sensing method. Biodiv. Res. Conserv. 1–2: 111–113. Google Scholar

  • [9] Ejankowski W. 2008. Effect of waterlogging on regeneration in the dwarf birch (Betula nana). Biologia 63: 670–676. http://dx.doi.org/10.2478/s11756-008-0126-8Web of ScienceCrossrefGoogle Scholar

  • [10] Falińska K. 1979a. Experimental studies of the reproductive strategy of Caltha palustris L. populations. Ecol. pol. 27: 527–543. Google Scholar

  • [11] Falińska K. 1979b. Modifications of plant populations in forest ecosystems and their ecotones. Pol. Ecol. Stud. 5: 89–150. Google Scholar

  • [12] Falińska K. 1990. Osobnik, populacja, fitocenoza. PWN, Warszawa, 309 pp. Google Scholar

  • [13] Frankl R. & Schmeidl H. 2000. Vegetation change in South German raised bog: Ecosystem engineering by plant species, vegetation switch or ecosystem level feedback mechanisms? Flora 195: 267–276. Google Scholar

  • [14] Gostyńska-Jakuszewska M. & Lekavičius A. 1989. Selected Boreal and Subboreal species in the flora of Poland and the Lithuanian SSR. Part I. Fragm. Flor. Geobot. 34: 299–314. Google Scholar

  • [15] Grime J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Properties. John Wiley & Sons, Chichester, 417 pp. Google Scholar

  • [16] Gunnarsson U. & Rydin H. 1998. Demography and recruitment of Scots pine on raised bogs in eastern Sweden and relationships to microhabitat differentiation. Wetlands 18: 133–141. http://dx.doi.org/10.1007/BF03161450CrossrefGoogle Scholar

  • [17] Harper J.L. 1977. Population Biology of Plants. Acad. Press, London, 857 pp. Google Scholar

  • [18] Honnay O. & Bossuyt B. 2005. Prolonged clonal growth: escape route or route to extinction? Oikos 108: 427–432. http://dx.doi.org/10.1111/j.0030-1299.2005.13569.xCrossrefGoogle Scholar

  • [19] Huber H., Lukács S. & Watson M.A. 1999. Spatial structure of stoloniferous herbs: an interplay between structural blueprint, ontogeny and phenotypic plasticity. Plant Ecol. 141: 107–115. http://dx.doi.org/10.1023/A:1009861521047CrossrefGoogle Scholar

  • [20] Hutchinson T.C. 1966. The occurrence of living and subfossil remains of Betula nana L. in Upper Teesdale. New Phytologist 65: 351–357. http://dx.doi.org/10.1111/j.1469-8137.1966.tb06371.xCrossrefGoogle Scholar

  • [21] Jalas J. & Suominen J. eds 1976. Atlas Florae Europaeae 3: Salicaceae to Balanophoraceae. Committee for Mapping the Flora of Europe, and Socieda Biologica Fennica Vanamo, Helsinki, 128 pp. Google Scholar

  • [22] Jasnowski M., Jasnowska J. & Markowski S. 1968. Ginące torfowiska wysokie i przejściowe w pasie nadbałtyckim Polski. Ochr. Przyr. 33: 69–123. Google Scholar

  • [23] Jonsell B. 2000. Betula L. In: Jonsell B. (ed.), Flora Nordica 1. The Royal Swedish Academy of Science, Stockholm, pp. 197–203. Google Scholar

  • [24] Knox J.S. 1997. A nine year demographic study of Helenium virginicum (Asteraceae), a narrow endemic seasonal wetland plant. J. Torr. Bot. Soc. 124: 236–245. http://dx.doi.org/10.2307/2996611CrossrefGoogle Scholar

  • [25] Kondracki J. 1998. Geografia regionalna Polski. Wyd. Nauk. PWN, Warszawa, 441 pp. Google Scholar

  • [26] Kotowski W., van Andel J., van Diggelen R. & Hogendorf J. 2001. Responses of fen plant species to groundwater level and light intensity. Plant Ecol. 155: 147–156. http://dx.doi.org/10.1023/A:1013214716842CrossrefGoogle Scholar

  • [27] Kozlowski T.T. 1997. Responses of woody plants to flooding and salinity. Tree Physiol. Monogr. 1. Heron Publishing, Victoria, pp. 1–29. Google Scholar

  • [28] Laine J., Vasander H. & Laiho R. 1995. Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J. Appl. Ecol. 32: 785–802. http://dx.doi.org/10.2307/2404818CrossrefGoogle Scholar

  • [29] Nordbakken J.-F., Rydgren K. & Økland R.H. 2004. Demography and population dynamics of Drosera anglica and D. rotundifolia. J. Ecol. 92: 110–121. http://dx.doi.org/10.1046/j.0022-0477.2004.00839.xCrossrefGoogle Scholar

  • [30] Noryśkiewicz A.M. 2005. Preliminary results of study on vegetation history in the Linje mire region using pollen analysis. Monogr. Bot. 94: 117–133. Google Scholar

  • [31] Pellerin S. & Lavoie C. 2003. Reconstructing the recent dynamics of mires using a multitechnique approach. J. Ecol. 91: 1008–1021. http://dx.doi.org/10.1046/j.1365-2745.2003.00834.xCrossrefGoogle Scholar

  • [32] Pilson D. 2000. Herbivory and natural selection on flowering phenology in wild sunflower, Helianthus annuus. Oecologia 122: 72–82. http://dx.doi.org/10.1007/PL00008838CrossrefGoogle Scholar

  • [33] Poveda K., Dewenter I.S., Scheu S. & Tscharntke T. 2003. Effects of below- and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia 135: 601–605. Google Scholar

  • [34] Silvertown J., Franco M., Pisanty I. & Mendoza A. 1993. Comparative plant demography — relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. J. Ecol. 81: 465–476. http://dx.doi.org/10.2307/2261525CrossrefGoogle Scholar

  • [35] Sokal R.R. & Rohlf F.J. 1995. Biometry. W.H. Freeman and Company, New York, 887 pp. Google Scholar

  • [36] Steufer J.F. & Huber H. 1998. Differential effect of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. Oecologia 117: 1–8. http://dx.doi.org/10.1007/s004420050624CrossrefGoogle Scholar

  • [37] Steufer J.F., During H.J. & de Kroon H. 1994. High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments. J. Ecol. 82: 511–518. http://dx.doi.org/10.2307/2261260CrossrefGoogle Scholar

  • [38] Symonides E. 1978. Effect of population density on the phenological development of individuals of annual plant species. Ekol. pol. 26: 273–286. Google Scholar

  • [39] van Wijk M.T., Klemmensen K.E., Shaver G.R., Williams R., Callaghan T.V., Chapin III F.S., Cornelissen J.H.C., Gough L., Hobbie S.E., Jonasson S., Lee J.A., Michelsen A., Press M.C., Richardson S.J. & Rueth H. 2003. Long-term ecosystem level experiment at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change. Glob. Change Biol. 10: 105–123. http://dx.doi.org/10.1111/j.1365-2486.2003.00719.xCrossrefGoogle Scholar

  • [40] Virtanen R. & Oksanen L. 1999. Topographic and regional patterns of tundra heath vegetation from northern Fennoscandia to the Taimyr Peninsula. Acta Bot. Fenn. 167: 29–70. Google Scholar

  • [41] Weppler T., Stoll P. & Stöcklin J. 2006. The relative importance of sexual and clonal reproduction for population growth in the long-lived alpine plant Geum reptans. J. Ecol. 94: 869–879. http://dx.doi.org/10.1111/j.1365-2745.2006.01134.xCrossrefGoogle Scholar

  • [42] Wilkoń-Michalska J. 1976. Struktura i dynamika populacji Salicornia patula Duval-Jouve. Rozprawy UMK, Toruń: pp. 1–156. Google Scholar

About the article

Published Online: 2010-02-21

Published in Print: 2010-04-01

Citation Information: Biologia, Volume 65, Issue 2, Pages 248–253, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0007-9.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Scott A. Woolbright, Thomas G. Whitham, Catherine A. Gehring, Gerard J. Allan, and Joseph K. Bailey
Trends in Ecology & Evolution, 2014, Volume 29, Number 7, Page 406
Arndt Hampe and Alistair S. Jump
Annual Review of Ecology, Evolution, and Systematics, 2011, Volume 42, Number 1, Page 313

Comments (0)

Please log in or register to comment.
Log in