Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 65, Issue 2

Issues

Codon optimization, expression and characterization of Bacillus subtilis MA139 β-1,3-1,4-glucanase in Pichia pastoris

Jiayun Qiao
  • National Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bo Zhang
  • National Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yiqun Chen
  • National Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yunhe Cao
  • National Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-02-21 | DOI: https://doi.org/10.2478/s11756-010-0017-7

Abstract

β-1,3-1,4-Glucanase has been broadly used in feed and brewing industries. According to the codon bias of Pichia pastoris, the Bacillus subtilis MA139 β-1,3-1,4-glucanase gene was de novo synthesized and expressed in P. pastoris X-33 strain under the control of the alcohol oxidase 1 promoter. In a 10-L fermentor, the β-1,3-1,4-glucanase was overexpressed with a yield of 15,000 U/mL by methanol induction for 96 h. The recombinant β-1,3-1,4-glucanase exhibited optimal activity at 40°C and pH 6.4. The activity of the recombinant β-1,3-1,4-glucanase was not significantly affected by various metal ions and chemical reagents. To our knowledge, the expression of this β-1,3-1,4-glucanase from Bacillus sp. in P. pastoris is in relatively high level compared to previous reports. These biochemical characteristics suggest that the recombinant β-1,3-1,4-glucanase has a prospective application in feed and brewing industries.

Keywords: β-1,3-1,4-glucanase; Bacillus subtilis; Pichia pastoris; expression; codon optimization

  • [1] Akita M., Kayatama K., Hatada Y., Ito S. & Horikoshi K. 2005. A novel β-glucanase gene from Bacillus halodurans C-125. FEMS Microbiol. Lett. 248: 9–15. http://dx.doi.org/10.1016/j.femsle.2005.05.009Google Scholar

  • [2] Campbell G.L., Rossnagel B.G., Classen H.L. & Thacker P.A. 1989. Genotypic and environmental differences in extract viscosity of barley and their relationship to nutritive value for broiler chickens. Anim. Feed Sci. Technol. 26: 221–230. http://dx.doi.org/10.1016/0377-8401(89)90036-9CrossrefGoogle Scholar

  • [3] Cantwell B.A., Brazil G., Murphy N. & McConnell D.J. 1986. Comparison of expression of the endo-β-1,3-1,4-glucanase gene from Bacillus subtilis in Saccharomyces cerevisiae from the CYC1 and ADH1 promoters. Curr. Genet. 11: 65–70. http://dx.doi.org/10.1007/BF00389427CrossrefGoogle Scholar

  • [4] Cao Y.H., Qiao J.Y., Li Y.H. & Lu W.Q. 2007. Constitutive expression in Pichia pastoris of a de novo synthetic endo-β-1,4-xylanase gene from Aspergillus sulphureus and partial characterization of the recombinant enzyme. Appl. Microbiol. Biotechnol. 76: 579–585. http://dx.doi.org/10.1007/s00253-007-0978-9CrossrefWeb of ScienceGoogle Scholar

  • [5] Chen H., Li X.L. & Ljungdahl L.G. 1997. Sequencing of a 1,3-1,4-beta-D-glucanase (lichenase) from the anaerobic fungus Orpinomyces strain PC-2: properties of the enzyme expressed in Escherichia coli and evidence that the gene has a bacterial origin. J. Bacteriol. 79: 6028–6034. Google Scholar

  • [6] Chen X.L., Qiao J.Y., Yu H.F. & Cao Y.H. 2009. Overexpression of an optimized Aspergillus sulphureus β-mannanase gene in Pichia pastoris. Biologia 64: 235–238. http://dx.doi.org/10.2478/s11756-009-0043-5Web of ScienceCrossrefGoogle Scholar

  • [7] Chen Y.Q., Huang X.Q., Song D.X., Yang F. & Zheng W.J. 1992. Molecular cloning and expression of Bacillus subtilis bglS gene in Saccharomyces cerevisiae. Curr. Microbiol. 25: 279–282. http://dx.doi.org/10.1007/BF01575862CrossrefGoogle Scholar

  • [8] Ekinci M.S., McCrae S.I. & Flint H.J. 1997. Isolation and overexpression of a gene encoding an extracellular β-(1,3-1,4)-glucanase from Streptococcus bovis JB1. Appl. Environ. Microbiol. 63: 3752–3756. Google Scholar

  • [9] Haros M., Rosell C.M. & Benedilo C. 2002. Improvement of flour quality through carbohydrase treatment during wheat tempering. J. Agric. Food Chem. 50: 4126–4130. http://dx.doi.org/10.1021/jf020059kCrossrefGoogle Scholar

  • [10] Heng N.C.K., Jenkinson H.F. & Tannock G.W. 1997. Cloning and expression of an endo-1,3-1,4-β-glucanase gene from Bacillus macerans in Lactobacillus reuteri. Appl. Environ. Microbiol. 63: 3336–3340. Google Scholar

  • [11] Hinchliffe E. 1984. Cloning and expression of a Bacillus subtilis endo-1,3-1,4-β-D-glucanase gene in Escherichia coli K12. J. Gen. Microbiol. 130: 1285–1291. Google Scholar

  • [12] Kim J.Y. 2003. Overproduction and secretion of Bacillus circulans endo-β-1,3-1,4-glucanase gene (bglBC1) in B. subtilis and B. megaterium. Biotechnol. Lett. 25: 1445–1449. http://dx.doi.org/10.1023/A:1025059713425CrossrefGoogle Scholar

  • [13] Kitamura E. & Kamei Y. 2006. Molecular cloning of the gene encoding β-1,3(4)-glucanase A from a marine bacterium, Pseudomonas sp. PE2, an essential enzyme for the degradation of Pythium porphyrae cell walls. Appl. Microbiol. Biotechnol. 71: 630–637. http://dx.doi.org/10.1007/s00253-005-0200-xCrossrefGoogle Scholar

  • [14] Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685. http://dx.doi.org/10.1038/227680a0CrossrefGoogle Scholar

  • [15] Laitila A., Sweins H., Vilola A., Kotavita E., Olkku J., Home S. & Haikara A. 2006. Lactobacillus plantarum and Pediococcus pentosaceus starter cultures as a tool for microflora management in malting and for enhancement of malt proceability. J. Agric. Food Chem. 54: 3840–3851. http://dx.doi.org/10.1021/jf052979jCrossrefGoogle Scholar

  • [16] Lu W.Q., Li D.F. & Wu Y.B. 2003. Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid-state fermentation by Aspergillus sulphureus. Enzyme Microb. Technol. 32: 305–311. http://dx.doi.org/10.1016/S0141-0229(02)00292-2CrossrefGoogle Scholar

  • [17] Macauley-Patrick S., Fazenda M.L., McNeil B. & Harvey L.M. 2005. Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249–270. http://dx.doi.org/10.1002/yea.1208CrossrefGoogle Scholar

  • [18] Murray P.G., Grassick A., Laffey C.D., Cuffe M.M., Higgins T., Savage A.V., Planas A. & Tuohy M.G. 2001. Isolation and characterization of a thermostable endo-β-glucanase active on 1,3-1,4-β-D-glucans from the aerobic fungus Talaromyces emersonii CBS 814.70. Enzyme Microb. Technol. 29: 90–98. http://dx.doi.org/10.1016/S0141-0229(01)00354-4CrossrefGoogle Scholar

  • [19] Qiao J.Y., Dong B., Li Y.H., Zhang B. & Cao Y.H. 2009. Cloning of a β-1,3-1,4-glucanase gene from Bacillus subtilis MA139 and its functional expression in Escherichia coli. Appl. Biochem. Biotechnol. 152: 334–342. http://dx.doi.org/10.1007/s12010-008-8193-4CrossrefGoogle Scholar

  • [20] Sharp P.M. & Li WH. 1986. An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 24: 28–38. http://dx.doi.org/10.1007/BF02099948CrossrefGoogle Scholar

  • [21] Teng D., Wang J.H., Fan Y., Yang Y.L., Tian Z.G., Luo J., Yang G.P. & Zhang F. 2006. Cloning of β-1,3-1,4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Appl. Microbiol. Biotechnol. 72: 705–712. http://dx.doi.org/10.1007/s00253-006-0329-2CrossrefGoogle Scholar

  • [22] Teng D., Fan Y., Yang Y., Tian Z., Luo J. & Wang J. 2007. Codon optimization of Bacillus licheniformis β-1,3-1,4-glucanase gene and its expression in Pichia pastoris. Appl. Microbiol. Biotechnol. 74: 1074–1083. http://dx.doi.org/10.1007/s00253-006-0765-zWeb of ScienceCrossrefGoogle Scholar

  • [23] Wen T.N., Chen J.L., Lee S.H., Yang N.S. & Shyur L.F. 2005. A truncated Fibrobacter succinogenes 1,3-1,4-β-D-glucanase with improved enzymatic activity and thermotolerance. Biochemistry 44: 9197–9205 http://dx.doi.org/10.1021/bi0500630CrossrefGoogle Scholar

  • [24] Zhao X., Huo K.K. & Li Y.Y. 2000. Synonymous codon usage in Pichia pastoris. Chin. J. Biotechnol. 16: 308–311. Google Scholar

About the article

Published Online: 2010-02-21

Published in Print: 2010-04-01


Citation Information: Biologia, Volume 65, Issue 2, Pages 191–196, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0017-7.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Honglei Pei, Xiaojing Guo, Wenhan Yang, Junnan Lv, Yiqun Chen, and Yunhe Cao
Journal of Basic Microbiology, 2015, Volume 55, Number 7, Page 869

Comments (0)

Please log in or register to comment.
Log in