Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 65, Issue 2

Issues

Temperature dependence and ontogenetic changes of metabolic rate of an endemic earthworm Dendrobaena mrazeki

Vladimír Šustr
  • Biology Centre Academy of Sciences of the Czech Republic, v.v.i., Institute of Soil Biology, Na Sádkách 7, CZ-37005, České Budějovice, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Václav Pižl
  • Biology Centre Academy of Sciences of the Czech Republic, v.v.i., Institute of Soil Biology, Na Sádkách 7, CZ-37005, České Budějovice, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-02-21 | DOI: https://doi.org/10.2478/s11756-010-0019-5

Abstract

Ontogenetic changes and temperature dependency of respiration rate were studied in Dendrobaena mrazeki, an earthworm species inhabiting relatively warm and dry habitats in Central Europe. D. mrazeki showed respiration rate lower than in other earthworm species, < 70 μl O2 g−1 h−1, within the temperature range of 5–35°C. The difference of respiration rate between juveniles and adults was insignificant at 20°C. The response of oxygen consumption to sudden temperature changes was compared with the temperature dependence of respiratory activity in animals pre-acclimated to temperature of measurement. No significant impact of acclimation on the temperature response of oxygen consumption was found. The body mass-adjusted respiration rate increased slowly with increasing temperature from 5 to 25°C (Q10 from 1.2 to 1.7) independently on acclimation history of earthworms. Oxygen consumption decreased above 25°C up to upper lethal limit (about 35°C). Temperature dependence of metabolic rate is smaller than in other earthworm species. The relationships between low metabolic sensitivity to temperature, slow locomotion and reactivity to touching as observed in this species are discussed.

Keywords: earthworm; Lumbricidae; Dendrobaena; oxygen consumption; acclimation; metabolic rate; temperature

  • [1] Calderon S., Holmstrup M., Westh P. & Overgaard J. 2009. Dual roles of glucose in the freeze-tolerant earthworm Dendrobaena octaedcra: cryoprotection and fuel for metabolism. J. Exp. Biol. 212: 859–866. DOI 10.1242/jeb.026864 http://dx.doi.org/10.1242/jeb.026864CrossrefWeb of ScienceGoogle Scholar

  • [2] Dunger W. 1980. Tiere im Boden. Die Neue Brehm Bücherei, Ziemsen, Wittenberg-Lutherstadt, 280 pp. Google Scholar

  • [3] Gromadska M. 1962. Changes in respiration metabolism of Lumbricus castaneus Sav. under influence of various constant and alternating temperatures. Stud. Soc. Sci. Torunensis, Torun 6: 1–11. Google Scholar

  • [4] Kirberger C. 1953. Metabolic adaptations to temperature earthworms. Z. Vergl. Physiol. 85: 175–198. http://dx.doi.org/10.1007/BF00340959CrossrefGoogle Scholar

  • [5] Kleinzeller A. 1965. Manometrische Methoden und ihre Anwendung in Biologie und Biochemie. Gustav Fischer Verlag, Jena, 620 pp. Google Scholar

  • [6] Knoz J. 1957. Short-term impact of temperature on oxygen consumption of some oligochaets. Acta Soc. Zool. Bohemoslov. 21: 203–208. Google Scholar

  • [7] Lee K. 1985. Earthworms, Their Ecology and Relationships with Soils and Land Use. Academic Press, London, 411 pp. Google Scholar

  • [8] Moment G.B. & Habermann H.M. 1979. Thermal acclimation and compensation of respiratory oxygen uptake in an earthworm, Eisenia foetida. Physiol. Zool. 52: 542–548. Google Scholar

  • [9] Phillipson J. & Bolton P.J. 1976. The respiratory metabolism of selected Lumbricidae. Oecologia 22: 135–152. DOI 10.1007/BF00344713 http://dx.doi.org/10.1007/BF00344713CrossrefGoogle Scholar

  • [10] Pižl V. 2002. Earthworms of the Czech Republic. Sborn. Přírodověd. Klubu v Uherském Hradišti Suppl. 9: 1–155. Google Scholar

  • [11] Precht H., Christophersen J., Hensel H. & Larcher W. 1973. Temperature and Life. Springer, Berlin, Heidelberg, New York, 779 pp. Google Scholar

  • [12] Riisgård H.U. 1998. No foundation of a “3/4 power scaling law” for respiration in biology. Ecol. Lett. 1: 71–73. DOI 10.1046/j.1461-0248.1998.00020.x http://dx.doi.org/10.1046/j.1461-0248.1998.00020.xCrossrefGoogle Scholar

  • [13] Sláma K. 1984. Microrespirometry in small tissues and organs, pp. 101–129. In: Bradley T.J. & Miller T.A. (eds), Measurement of Ion Transport and Metabolic Rate in Insects, Springer, New York. Google Scholar

  • [14] Šustr V. & Pižl V. 2007. Selected physiological parameters of the earthworm Dendrobaena mrazeki (Černosvitov, 1935), pp. 171–175. In: Tajovský K., Schlaghamerský J. & Pižl V. (eds), Contributions to Soil Zoology in Central Europe II, ISB BC AS CR, v.v.i., Českě Budějovice. Google Scholar

  • [15] Šustr V. & Pižl V. 2009. Oxygen consumption of the earthworm species Dendrobaena mrazeki. Eur. J. Soil Biol. 45: 478–482. DOI 10.1016/j.ejsobi.2009.08.001 http://dx.doi.org/10.1016/j.ejsobi.2009.08.001CrossrefGoogle Scholar

  • [16] Uvarov A.V. 1998. Respiration activity of Dendrobaena octaedra (Lumbricidae) under constant and diurnally fluctuating temperature regimes in laboratory microcosms. Eur. J. Soil Biol. 34: 1–10. DOI 10.1016/S1164-5563(99)80001-6 http://dx.doi.org/10.1016/S1164-5563(99)80001-6CrossrefGoogle Scholar

  • [17] Uvarov A.V. & Scheu S. 2004a. Effects of density and temperature regime on respiratory activity of the epigeic earthworm species Lumbricus rubellus and Dendrobaena octaedra (Lumbricidae). Eur. J. Soil Biol. 40: 163–167. DOI 10.1016/j.ejsobi.2005.01.001 http://dx.doi.org/10.1016/j.ejsobi.2005.01.001CrossrefGoogle Scholar

  • [18] Uvarov A.V. & Scheu S. 2004b. Effects of temperature regime on the respiratory activity of developmental stages of Lumbricus rubellus (Lumbricidae). Pedobiologia 48: 365–371. DOI 10.1016/j.pedobi.2004.05.002 http://dx.doi.org/10.1016/j.pedobi.2004.05.002CrossrefGoogle Scholar

  • [19] Zajonc I. 1980. Earthworms (Oligochaeta, Lumbricidae) of Slovakia. Biol. Práce 27: 1–133. Google Scholar

About the article

Published Online: 2010-02-21

Published in Print: 2010-04-01


Citation Information: Biologia, Volume 65, Issue 2, Pages 289–293, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0019-5.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Seiichiro YONEMURA, Satoshi KANEDA, Naomi KODAMA, Gen SAKURAI, and Masayuki YOKOZAWA
Journal of Agricultural Meteorology, 2019, Volume 75, Number 2, Page 103
[3]
Kobayashi Makoto, Yukio Minamiya, and Nobuhiro Kaneko
Plant and Soil, 2016, Volume 404, Number 1-2, Page 209
[4]
[5]
Patricks Voua Otomo, Sophie A. Reinecke, and Adriaan J. Reinecke
Journal of Applied Toxicology, 2013, Volume 33, Number 12, Page 1520

Comments (0)

Please log in or register to comment.
Log in