Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter February 21, 2010

Temperature dependence and ontogenetic changes of metabolic rate of an endemic earthworm Dendrobaena mrazeki

  • Vladimír Šustr EMAIL logo and Václav Pižl
From the journal Biologia

Abstract

Ontogenetic changes and temperature dependency of respiration rate were studied in Dendrobaena mrazeki, an earthworm species inhabiting relatively warm and dry habitats in Central Europe. D. mrazeki showed respiration rate lower than in other earthworm species, < 70 μl O2 g−1 h−1, within the temperature range of 5–35°C. The difference of respiration rate between juveniles and adults was insignificant at 20°C. The response of oxygen consumption to sudden temperature changes was compared with the temperature dependence of respiratory activity in animals pre-acclimated to temperature of measurement. No significant impact of acclimation on the temperature response of oxygen consumption was found. The body mass-adjusted respiration rate increased slowly with increasing temperature from 5 to 25°C (Q10 from 1.2 to 1.7) independently on acclimation history of earthworms. Oxygen consumption decreased above 25°C up to upper lethal limit (about 35°C). Temperature dependence of metabolic rate is smaller than in other earthworm species. The relationships between low metabolic sensitivity to temperature, slow locomotion and reactivity to touching as observed in this species are discussed.

[1] Calderon S., Holmstrup M., Westh P. & Overgaard J. 2009. Dual roles of glucose in the freeze-tolerant earthworm Dendrobaena octaedcra: cryoprotection and fuel for metabolism. J. Exp. Biol. 212: 859–866. DOI 10.1242/jeb.026864 http://dx.doi.org/10.1242/jeb.02686410.1242/jeb.026864Search in Google Scholar

[2] Dunger W. 1980. Tiere im Boden. Die Neue Brehm Bücherei, Ziemsen, Wittenberg-Lutherstadt, 280 pp. Search in Google Scholar

[3] Gromadska M. 1962. Changes in respiration metabolism of Lumbricus castaneus Sav. under influence of various constant and alternating temperatures. Stud. Soc. Sci. Torunensis, Torun 6: 1–11. Search in Google Scholar

[4] Kirberger C. 1953. Metabolic adaptations to temperature earthworms. Z. Vergl. Physiol. 85: 175–198. http://dx.doi.org/10.1007/BF0034095910.1007/BF00340959Search in Google Scholar

[5] Kleinzeller A. 1965. Manometrische Methoden und ihre Anwendung in Biologie und Biochemie. Gustav Fischer Verlag, Jena, 620 pp. Search in Google Scholar

[6] Knoz J. 1957. Short-term impact of temperature on oxygen consumption of some oligochaets. Acta Soc. Zool. Bohemoslov. 21: 203–208. 10.1017/CBO9781316151488.096Search in Google Scholar

[7] Lee K. 1985. Earthworms, Their Ecology and Relationships with Soils and Land Use. Academic Press, London, 411 pp. Search in Google Scholar

[8] Moment G.B. & Habermann H.M. 1979. Thermal acclimation and compensation of respiratory oxygen uptake in an earthworm, Eisenia foetida. Physiol. Zool. 52: 542–548. Search in Google Scholar

[9] Phillipson J. & Bolton P.J. 1976. The respiratory metabolism of selected Lumbricidae. Oecologia 22: 135–152. DOI 10.1007/BF00344713 http://dx.doi.org/10.1007/BF0034471310.1007/BF00344713Search in Google Scholar

[10] Pižl V. 2002. Earthworms of the Czech Republic. Sborn. Přírodověd. Klubu v Uherském Hradišti Suppl. 9: 1–155. Search in Google Scholar

[11] Precht H., Christophersen J., Hensel H. & Larcher W. 1973. Temperature and Life. Springer, Berlin, Heidelberg, New York, 779 pp. 10.1007/978-3-642-65708-5Search in Google Scholar

[12] Riisgård H.U. 1998. No foundation of a “3/4 power scaling law” for respiration in biology. Ecol. Lett. 1: 71–73. DOI 10.1046/j.1461-0248.1998.00020.x http://dx.doi.org/10.1046/j.1461-0248.1998.00020.x10.1046/j.1461-0248.1998.00020.xSearch in Google Scholar

[13] Sláma K. 1984. Microrespirometry in small tissues and organs, pp. 101–129. In: Bradley T.J. & Miller T.A. (eds), Measurement of Ion Transport and Metabolic Rate in Insects, Springer, New York. 10.1007/978-1-4613-8239-3_5Search in Google Scholar

[14] Šustr V. & Pižl V. 2007. Selected physiological parameters of the earthworm Dendrobaena mrazeki (Černosvitov, 1935), pp. 171–175. In: Tajovský K., Schlaghamerský J. & Pižl V. (eds), Contributions to Soil Zoology in Central Europe II, ISB BC AS CR, v.v.i., Českě Budějovice. Search in Google Scholar

[15] Šustr V. & Pižl V. 2009. Oxygen consumption of the earthworm species Dendrobaena mrazeki. Eur. J. Soil Biol. 45: 478–482. DOI 10.1016/j.ejsobi.2009.08.001 http://dx.doi.org/10.1016/j.ejsobi.2009.08.00110.1016/j.ejsobi.2009.08.001Search in Google Scholar

[16] Uvarov A.V. 1998. Respiration activity of Dendrobaena octaedra (Lumbricidae) under constant and diurnally fluctuating temperature regimes in laboratory microcosms. Eur. J. Soil Biol. 34: 1–10. DOI 10.1016/S1164-5563(99)80001-6 http://dx.doi.org/10.1016/S1164-5563(99)80001-610.1016/S1164-5563(99)80001-6Search in Google Scholar

[17] Uvarov A.V. & Scheu S. 2004a. Effects of density and temperature regime on respiratory activity of the epigeic earthworm species Lumbricus rubellus and Dendrobaena octaedra (Lumbricidae). Eur. J. Soil Biol. 40: 163–167. DOI 10.1016/j.ejsobi.2005.01.001 http://dx.doi.org/10.1016/j.ejsobi.2005.01.00110.1016/j.ejsobi.2005.01.001Search in Google Scholar

[18] Uvarov A.V. & Scheu S. 2004b. Effects of temperature regime on the respiratory activity of developmental stages of Lumbricus rubellus (Lumbricidae). Pedobiologia 48: 365–371. DOI 10.1016/j.pedobi.2004.05.002 http://dx.doi.org/10.1016/j.pedobi.2004.05.00210.1016/j.pedobi.2004.05.002Search in Google Scholar

[19] Zajonc I. 1980. Earthworms (Oligochaeta, Lumbricidae) of Slovakia. Biol. Práce 27: 1–133. Search in Google Scholar

Published Online: 2010-2-21
Published in Print: 2010-4-1

© 2010 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-010-0019-5/html
Scroll to top button