Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year




Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 65, Issue 3

Issues

Ethanol fermentation of mahula (Madhuca latifolia) flowers using free and immobilized bacteria Zymomonas mobilis MTCC 92

Shuvashish Behera / Rama Mohanty / Ramesh Ray
  • Microbiology Laboratory, Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar, 751019, Orissa, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-04-24 | DOI: https://doi.org/10.2478/s11756-010-0041-7

Abstract

Mahula (Madhuca latifolia L.) is a deciduous tree commonly found in the tropical rain forests of Asian and Australian continent. Corolla, the edible part of its flowers, is rich in fermentable sugar (37 ± 0.23%; on dry weight basis). Batch fermentation of mahula flowers was carried out using Zymomonas mobilis MTCC 92 free cells and cells immobilized in calcium alginate matrix. The ethanol productions were 122.9 ± 0.972 and 134.6 ± 0.104 g/kg flowers on dry weight basis using free and immobilized cells, respectively, after 96 h of fermentation, which showed that cells entrapped in calcium alginate matrix yielded 8.7% more ethanol than free cells. Further, the immobilized cells were physiologically active up to three more cycles of fermentation producing 132.7 ± 0.095, 130.5 ± 0.09 and 128.7 ± 0.056 g ethanol per kg flower in first, second and third cycle, respectively.

Keywords: bio-ethanol; cell immobilization; fermentation; Madhuca latifolia; Zymomonas mobilis

  • [1] Adinarayana K., Jyothi B. & Ellaiah P. 2005. Production of alkaline protease with immobilized cells of Bacillus subtilis PE-11 in various matrices by entrapment technique. AAPS Pharm. Sci. Tech. 6: 391–397. http://dx.doi.org/10.1208/pt060348CrossrefGoogle Scholar

  • [2] Amerine M.A. & Ough C.S. 1984. Wine and Must Analysis. Wiley, New York. Google Scholar

  • [3] Bailey J.E. & Ollis D.F. 1986. Biochemical Engineering Fundamentals. McGraw-Hill, New York. Google Scholar

  • [4] Bashay U. 2003. Production of alkaline protease by Teredinobacter turnirae cells immobilized in Ca-alginate beads. Afr. J. Biotechnol. 2: 60–65. Google Scholar

  • [5] Behera S., Kar S., Mohanty R.C. & Ray R.C. 2010. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar agar and Ca-alginate matrices. Appl. Energy. 87: 96–100. http://dx.doi.org/10.1016/j.apenergy.2009.05.030CrossrefGoogle Scholar

  • [6] Bravo P. & Gonzalez G. 1991. Continuous ethanol fermentation by immobilized yeast cells in a fluidized bed reactor. J. Chem. Technol. Biotechnol. 52: 127–134. http://dx.doi.org/10.1002/jctb.280520110CrossrefGoogle Scholar

  • [7] Busche R.M., Scott C.D., Davison B.H. & Lynd L.R. 1992. Ethanol, the ultimate feedstock. A technoeconomic evaluation of ethanol manufacture in fluidazed bed bioreactors operating with immobilized cells. Appl. Biochem. Biotechnol. 34/35: 395–415. http://dx.doi.org/10.1007/BF02920564CrossrefGoogle Scholar

  • [8] Carvalho W., Silva S.S., Converti A. & Vitolo M. 2002. Metabolic behaviour of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolysate. Biotechnol. Bioeng. 79: 165–169. http://dx.doi.org/10.1002/bit.10319CrossrefGoogle Scholar

  • [9] Chandel A.K., Chan E.S., Rudravaram R., Narasu M.L., Rao L.V. & Pogaku R. 2007. Economics and environmental impact of bio-ethanol production technologies: an appraisal. Biotechnol. Mol. Biol. Rev. 2: 14–32. Google Scholar

  • [10] Davis L., Jeon Y., Svenson C., Rogers P., Pearce J. & Peiris P. 2005. Evaluation of wheat stillage for ethanol production by recombinant Zymomonas mobilis. Biomass Bioenergy 29: 49–59. http://dx.doi.org/10.1016/j.biombioe.2005.02.006CrossrefGoogle Scholar

  • [11] Davis L., Rogers P., Pearce J. & Peiris P. 2006. Evaluation of Zymomonas-based ethanol production from a hydrolysed waste starch stream. Biomass Bioenergy 30: 809–814. http://dx.doi.org/10.1016/j.biombioe.2005.05.003CrossrefGoogle Scholar

  • [12] Diderich J.A., Schepper M., van Hoek P., Luttik M.A., van Dijken J.P., Pronk J.T., Klaassen P., Boelens, H.F., de Mattos M.J., van Dam K. & Kruckeberg A.L. 1999. Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem. 274: 15350–15359. http://dx.doi.org/10.1074/jbc.274.22.15350CrossrefGoogle Scholar

  • [13] Doelle M.B. & Doelle H.W. 1990. Sugarcane molasses fermentation by Zymomonas mobilis. Appl. Microbiol. Biotechnol. 33: 31–35. http://dx.doi.org/10.1007/BF00170565CrossrefGoogle Scholar

  • [14] Hu Z., Fang F., Ben D.F., Pu G. & Wang C. 2004. Net energy, CO2 emission, and life-cycle cost assessment of cassava-based ethanol as an alternative automotive fuel in China. Appl. Energy. 78: 247–256. http://dx.doi.org/10.1016/j.apenergy.2003.09.003CrossrefGoogle Scholar

  • [15] Hu Z., Tan P. & Pu G. 2006. Multi-objective optimization of cassava-based fuel ethanol used as an alternative automotive fuel in Guangxi, China. Appl. Energy. 83: 819–840. http://dx.doi.org/10.1016/j.apenergy.2005.09.002CrossrefGoogle Scholar

  • [16] Jain V.K., Toran-Diaz I. & Barrati J. 1985. Preparation and characterization of immobilized growing cells of Zymomonas mobilis for ethanol production. Biotechnol. Bioeng. 27: 273–279. http://dx.doi.org/10.1002/bit.260270310CrossrefGoogle Scholar

  • [17] Kadar Z., Maltha S.F., Szengyel Z., Reczey K. & de Laat W. 2007. Ethanol fermentation of various pretreated and hydrolyzed substrates at low initial pH. Appl Biochem Biotechnol. 137–140: 847–58. http://dx.doi.org/10.1007/s12010-007-9102-yCrossrefWeb of ScienceGoogle Scholar

  • [18] Kar S. & Ray R.C. 2008. Statistical optimization of α-amylase production by Streptomyces erumpens MTCC 7317 cells in calcium alginate beads using response surface methodology. Polish J. Microbiol. 57: 49–57. Google Scholar

  • [19] Kar S., Swain M.R. & Ray R.C. 2009. Statistical optimization of α-amylase production with immobilized cells of Streptomyces erumpens MTCC 7317 in Luffa cylindrica L. sponge discs. Appl. Biochem. Biotechnol. 152: 177–188. http://dx.doi.org/10.1007/s12010-008-8248-6CrossrefWeb of ScienceGoogle Scholar

  • [20] Kim C.H. & Rhee S.K. 1990. Ethanol production from Jerusalem artichoke by inulinase and Zymomonas mobilis. Appl. Biochem. Biotechnol. 23: 171–180. http://dx.doi.org/10.1007/BF02798385CrossrefGoogle Scholar

  • [21] Kourkoutas Y., Bekatorous A., Banat, I.M., Marchant R. & Koutinas A.A. 2004. Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol. 21: 377–397. http://dx.doi.org/10.1016/j.fm.2003.10.005CrossrefGoogle Scholar

  • [22] Lawford H.G. & Rousseau J.D. 1992. Effect of acetic acid on xylose conversion to ethanol by genetically engineered Escherichia coli. Appl. Biochem. Biotechnol. 34: 185–204. http://dx.doi.org/10.1007/BF02920545CrossrefGoogle Scholar

  • [23] Lee E.C. & Huang C.T. 2000. Modeling of ethanol fermentation using Zymomonas mobilis ATCC 10988 grown on the media containing glucose and fructose. Biochem. Eng. J. 4: 217–227. http://dx.doi.org/10.1016/S1369-703X(99)00051-0CrossrefGoogle Scholar

  • [24] Mahadevan A. & Sridhar R. 1999. Methods in Physiological Plant Pathology. 5th Edition, Sivakami Publication, Madras, India. Google Scholar

  • [25] Mohanty S.K., Behera S., Swain M.R. & Ray R.C. 2008. Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid state fermentation. Appl. Energy. 86: 640–644. http://dx.doi.org/10.1016/j.apenergy.2008.08.022CrossrefGoogle Scholar

  • [26] Murphy J.D. & Carthy K.M. 2005. Ethanol production from energy crops and wastes for use as a transport fuel in Ireland. Appl. Energy 82: 148–166. http://dx.doi.org/10.1016/j.apenergy.2004.10.004CrossrefGoogle Scholar

  • [27] Nellaiah H. & Gunasekaran P. 1992. Ethanol production from cassava starch hydrolysate by immobilized Zymomonas mobilis. Ind. J. Microbiol. 32: 435–442. Google Scholar

  • [28] Nguyen T.L.T., Gheewala S.H. & Garivait S. 2008. Full chain energy analysis of fuel ethanol from cane molasses in Thailand. Appl. Energy. 85: 722–734. http://dx.doi.org/10.1016/j.apenergy.2008.02.002CrossrefWeb of ScienceGoogle Scholar

  • [29] Nowak J. & Roszyk H. 1997. Co-immobilization of Aspergillus niger and Zymomonas mobilis for ethanol production from starch. Pol. J. Food Nutr. Sci. 6: 65–70. Google Scholar

  • [30] Panesar P.S., Marwaha S.S. & Raj R. 2001. Screening of Zymomonas mobilis strain for ethanol production from molasses. Ind. J. Microbiol. 41: 187–198. Google Scholar

  • [31] Queresi N. & Manderson G.J. 1995. Bioconversion of renewable resources into ethanol: an economic evaluation of selected hydrolysis, fermentation, and membrane technologies. Energy Sources 17: 241–265. http://dx.doi.org/10.1080/00908319508946081CrossrefGoogle Scholar

  • [32] Ray R.C. & Naskar S.K. 2008. Bio-ethanol production from sweet potato (Ipomoea batatas L.) by enzymatic liquefaction and simultaneous saccharification and fermentation (SSF) process. Dyn. Biochem. Process Biotechnol. Mol. Biol. 2: 47–49. Google Scholar

  • [33] Rebros M., Rosenberg M., Stloukal R. & Stofikova L. 2005. High efficiency ethanol fermentation by entrapment of Zymomonas mobilis into lentikats. Lett. Appl. Microbiol. 41: 412–416. http://dx.doi.org/10.1111/j.1472-765X.2005.01770.xCrossrefGoogle Scholar

  • [34] Rogers P., Joachimsthal E. & Haggett K. 1997. Ethanol from lignocellulosics: potential for Zymomonas-based process. Australian Biotechnol. 7: 305–309. Google Scholar

  • [35] Ruanglek V., Maneewatthana D. & Tripetchkul S. 2006. Evaluation of thai agro-industrial wastes for bio-ethanol production by Zymomonas mobilis. Process. Biochem. 41: 1432–1437. http://dx.doi.org/10.1016/j.procbio.2006.01.010CrossrefGoogle Scholar

  • [36] Sanchez E.N., Alhadeff E.M., Rocha-Leao M.H.M., Fernandes R.C. & Pereira Jr. N. 1996. Performance of a continuous bioreactor with immobilized yeast cells in the ethanol fermentation of molasses stillage medium. Biotechnol. Lett. 18: 91–95. http://dx.doi.org/10.1007/BF00137817CrossrefGoogle Scholar

  • [37] Selvakumar P., Ashakumary L. & Pandey A. 1994. Microbial fermentations with immobilized cells. J. Sci. Ind. Res. 55: 443–449. Google Scholar

  • [38] Swain M.R., Kar S., Sahoo A.K. & Ray R.C. 2007. Ethanol fermentation of mahula (Madhuca latifolia L.) flowers using free and immobilized yeast Saccharoromyces cerevisiae. Microbiol. Res. 162: 93–98. http://dx.doi.org/10.1016/j.micres.2006.01.009Web of ScienceCrossrefGoogle Scholar

  • [39] Tanaka K., Hilary Z.D. & Ishizaki A. 1999. Investigation of the utility of pine apple juice and pine apple waste material as low cost substrate for ethanol fermentation by Zymomonas mobilis. J. Biosci. Bioeng. 87: 642–646. http://dx.doi.org/10.1016/S1389-1723(99)80128-5CrossrefGoogle Scholar

  • [40] Vijayagopal K. & Balagopalan C. 1989. Fermentation of cassava starch hydrolysate with immobilized cells of Saccharomyces cerevisiae. Starch/Starke. 41: 271–275. http://dx.doi.org/10.1002/star.19890410708CrossrefGoogle Scholar

  • [41] Yamashita Y., Kurosumi A., Sasaki C. & Nakamura Y. 2008. Ethanol production from paper sludge by immobilized Zymomonas mobilis. Biochem. Eng. 42: 314–319. http://dx.doi.org/10.1016/j.bej.2008.07.013CrossrefGoogle Scholar

  • [42] Yu B., Zhang F., Zheng Y. & Wang P.U. 1996. Alcohol fermentation from the mash of dried sweet potato with its drags using immobilized yeast. Process Biochem. 31: 1–6. http://dx.doi.org/10.1016/0032-9592(94)00057-3CrossrefGoogle Scholar

About the article

Published Online: 2010-04-24

Published in Print: 2010-06-01


Citation Information: Biologia, Volume 65, Issue 3, Pages 416–421, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0041-7.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Eduardo Leal Isla Santos, Magdalena Rostro-Alanís, Roberto Parra-Saldívar, and Alejandro J. Alvarez
Bioresource Technology, 2017
[2]
Conde de Almeida Nair and de Franceschi de Angelis Dejanira
Journal of Agricultural Biotechnology and Sustainable Development, 2016, Volume 8, Number 2, Page 7
[3]
Richa Arora, Shuvashish Behera, Nilesh K. Sharma, and Sachin Kumar
Frontiers in Microbiology, 2015, Volume 6
[4]
Aditi Gupta, Rohit Chaudhary, and Satyawati Sharma
Waste and Biomass Valorization, 2012, Volume 3, Number 2, Page 175
[5]
Shuvashish Behera, Rama Chandra Mohanty, and Ramesh Chandra Ray
Applied Energy, 2011, Volume 88, Number 1, Page 212
[7]
Bodhisatta Maiti, Ankita Rathore, Saurav Srivastava, Mitali Shekhawat, and Pradeep Srivastava
Applied Microbiology and Biotechnology, 2011, Volume 90, Number 1, Page 385

Comments (0)

Please log in or register to comment.
Log in