Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 65, Issue 4


Chromatic adaptation in lichen phyco- and photobionts

Bazyli Czeczuga / Ewa Czeczuga-Semeniuk / Adrianna Semeniuk
Published Online: 2010-06-10 | DOI: https://doi.org/10.2478/s11756-010-0058-y


The effect of light quality on the photosynthetic pigments as chromatic adaptation in 8 species of lichens were examined. The chlorophylls, carotenoids in 5 species with green algae as phycobionts (Cladonia mitis, Hypogymnia physodes, H. tubulosa var. tubulosa and subtilis, Flavoparmelia caperata, Xanthoria parietina) and the chlorophyll a, carotenoids and phycobiliprotein pigments in 3 species with cyanobacteria as photobionts (Peltigera canina, P. polydactyla, P. rufescens) were determined. The total content of photosynthetic pigments was calculated according to the formule and particular pigments were determined by means CC, TLC, HPLC and IEC chromatography. The total content of the photosynthetic pigments (chlorophylls, carotenoids) in the thalli was highest in red light (genus Peltigera), yellow light (Xanthoria parietina), green light (Cladonia mitis) and at blue light (Flavoparmelia caperata and both species of Hypogymnia). The biggest content of the biliprotein pigments at red and blue lights was observed. The concentration of C-phycocyanin increased at red light, whereas C-phycoerythrin at green light.

In Trebouxia phycobiont of Hypogymnia and Nostoc photobiont of Peltigera species the presence of the phytochromes was observed.

Keywords: carotenoids; chlorophylls; chromatic adaptation; lichens; photobionts; phycobiliproteins; phycobionts; phytochromes

  • [1] Arb C. von, Mueller R., Ammann K. & Brunold C. 1990. Lichen physiology and air pollution. Statistical analysis of the correlation between SO2, NO2, NO and O3, and chlorophyll content, net photosynthesis, sulphate uptake and protein synthesis of Parmelia sulcata Taylor. New Phytol. 115: 431–437. http://dx.doi.org/10.1111/j.1469-8137.1990.tb00468.xGoogle Scholar

  • [2] Avalos A. & Vicente C. 1987. Equivalence between Pfr and cyclic AMP in the induction of d-usnic acid dehydrogenase in the lichen Evernia prunastri. Plant Physiol. 84: 803–807. http://dx.doi.org/10.1104/pp.84.3.803CrossrefGoogle Scholar

  • [3] Barnes B.B., Zak D.R., Denton S.R. & Spurr S.H. 1998. Forest Ecology. John Wiley & Sons Inc., New York. Google Scholar

  • [4] Bačkor M., Fahselt D., Davidson R. D. & Wu C.T. 2003. Effects of copper on wild and tolerant strains of the lichen photobiont Trebouxia erici (Chlorophyta) and possible tolerance mechanisms. Arch. Env. Cont. Toxicol. 45: 159–167. http://dx.doi.org/10.1007/s00244-002-0134-6CrossrefGoogle Scholar

  • [5] Bačkor M., Swanson A.K. & Fahselt D. 2006. Chlorophyll a fluorescence and photosynthetic pigment composition of three Umbilicaria lichen species in relation to cloff light microenvironment. J. Hattori Bot. Lab. 99: 292–306. Google Scholar

  • [6] Bačkor M. & Zetikova J. 2003. Effects of copper cobalt and mercury on the chlorophyll contents of lichens Cetraria islandica and Flavocetraria cucullata. J. Hattori Bot. Lab. 93: 175–187. Google Scholar

  • [7] Beck A., Friedl T. & Rambold G. 1998. Selectivity of phycobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol. 139: 709–720. http://dx.doi.org/10.1046/j.1469-8137.1998.00231.xCrossrefGoogle Scholar

  • [8] Bennett A. & Bogorad L. 1973. Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell. Biol. 58: 119–135. http://dx.doi.org/10.1083/jcb.58.2.419CrossrefGoogle Scholar

  • [9] Bergman B. & Hällbom L. 1982. Nostoc of Peltigera canina when lichenized and isolated. Can. J. Bot. 60: 2092–2098. Google Scholar

  • [10] Bhattacharya D., Friedl T. & Damberger S. 1996. Nuclearencoded rDNA group I nitrous: origin and phylogenetic relationship of insertion site lineares in the green algae. Molec. Biol. Evol. 13: 987–989. Google Scholar

  • [11] Björn G.S. 1978. Phycochrome d, a new photochromic pigment from the blue-green alga, Tolypothrix distorta. Physiol. Plant. 42: 321–323. http://dx.doi.org/10.1111/j.1399-3054.1978.tb04089.xCrossrefGoogle Scholar

  • [12] Björn G.S. & Björn L.O. 1976. Photochromic pigments from blue-green algae: phycochromes a,b and c. Physiol. Plant. 36: 297–304. http://dx.doi.org/10.1111/j.1399-3054.1976.tb02246.xCrossrefGoogle Scholar

  • [13] Björn G.S. & Björn L.O. 1978. Action spectra for conversions of phycochrome c from Nostoc muscorum. Physiol. Plant. 43: 195–200. http://dx.doi.org/10.1111/j.1399-3054.1978.tb02563.xCrossrefGoogle Scholar

  • [14] Björn L.O. & Björn G.S. 1980. Photochromic pigments and photoregulation in blue-green algae. Photochem. Photobiol. 32: 849–852. http://dx.doi.org/10.1111/j.1751-1097.1980.tb04066.xCrossrefGoogle Scholar

  • [15] Bottomley W., Smith H. & Galston A.W. 1966. Flavonoid complexes in Pisum sativum. III. The effect of light on the synthesis of kaempferol and quercetin complexes. Phytochemistry 5: 117–123. http://dx.doi.org/10.1016/S0031-9422(00)85089-XCrossrefGoogle Scholar

  • [16] Chettri M. K., Cook C. M., Vardaka E., Savidis T. & Lanaras T. 1998. The effect of Cu, Zn and Pb on the chlorophyll content of the lichens Cladonia convulata and Cladonia rangiformis. Env. Exp. Bot. 39: 1–10. http://dx.doi.org/10.1016/S0098-8472(97)00024-5CrossrefGoogle Scholar

  • [17] Cordonnier M.M., Greppin H. & Pratt L.H. 1986. Identification of a highly conserved domain on phytochrome from angiosperms to algae. Plant Physiol. 80: 982–987. http://dx.doi.org/10.1104/pp.80.4.982CrossrefGoogle Scholar

  • [18] Czeczuga B. 1978. Lutein-a carotenoid dominating in Desmococcus vulgaris (Chaetophoraceae). Bull. Acad. Polon. Sci., Ser. Sci. Biol. 26: 453–455. Google Scholar

  • [19] Czeczuga B. 1981. The effect of short rays of the visible spectrum of the chlorophylls and carotenoids content of lichens. Nova Hedwigia 35: 371–376. Google Scholar

  • [20] Czeczuga B. 1985. Light-harvesting phycobiliprotein pigments of the red alga Leptosomia simplex from the Antarctic. Polar Biol. 4: 179–181. http://dx.doi.org/10.1007/BF00263881CrossrefGoogle Scholar

  • [21] Czeczuga B. 1986a. Chromatic adaptation in blue-green algae Anabaena cylindrica and A. variabilis. Phyton (Austria) 26: 1–9. Google Scholar

  • [22] Czeczuga B. 1986b. The effect of light on the content of photosynthetically active pigments in plants. V. Desmococcus vulgaris as a representative of epiphytes. Phyton (Austria) 26: 59–64. Google Scholar

  • [23] Czeczuga B. 1987. Chromatic adaptation in the lichens Peltigera polydactyla and P. rufescens. Phyton (Austria) 26: 201–208. Google Scholar

  • [24] Czeczuga B. 1988. Carotenoids, pp. 25–34. In: Galun M. (ed.), CRC Handbook of Lichenology, vol. III. CRC Press, Boka Raton, Florida. Google Scholar

  • [25] Czeczuga B. 1993. Carotenoids in lichens, pp. 53–66. In: Feige G.B. & Lumbsch H.T. (eds), Phytochemistry and Chemotaxonomy of Lichenized Ascomycetes. A Festschrift in Honour of Siegfried Huneck, J. Cramer, Stuttgart. Google Scholar

  • [26] Czeczuga B. & Krukowska K. 2001. Effect of habitat conditions on phycobionts and the content of photosynthesizing pigments in five lichen species. J. Hattori Bot. Lab. 90: 293–305. Google Scholar

  • [27] Czeczuga B. & Lengiewicz I. 2001. Lichens in the Knyszyńska Forest (N-E Poland). Ann. Acad. Med. Bialostocensis 46: 263–289. Google Scholar

  • [28] Czeczuga B. & Czeczuga-Semeniuk E. 2002. Seasonal changes in the size of phyco- and photobiont cells in some lichen species of the Knyszyńska Forest (N-E Poland). J. Hattori Bot. Lab. 92: 261–275. Google Scholar

  • [29] Czeczuga B. & Czeczuga-Semeniuk E. 2003. Effect of light quality on the size of phyco- and photobiont cells of some lichen species from the Knyszyńska Forest (N-E Poland). J. Hattori Bot. Lab. 93: 189–200. Google Scholar

  • [30] Czeczuga B., Czeczuga-Semeniuk E., Galun M. & Mukhtar A. 2004a. Pigmentation changes in Xanthoria parietina (L.) Th. Fr. J. Hattori Bot. Lab. 95: 293–300. Google Scholar

  • [31] Czeczuga B., Czeczuga-Semeniuk E. & Hammer S. 2004b. Carotenoids in the thalli of Cladonia grayi Merrill from sites of varied degrees of insolation. J. Hattori Bot. Lab. 95: 285–291. Google Scholar

  • [32] Czeczuga B., Czeczuga-Semeniuk E. & Semeniuk A. 2006a. Phycobiliprotein pigments in Pseudocyphelaria species and their role in complementary chromatic adaptation. J. Hattori Bot. Lab. 100: 625–633. Google Scholar

  • [33] Czeczuga B., Czeczuga-Semeniuk E. & Semeniuk A. 2006b. Effect of light quality on the content of chlorophylls, carotenoids and phytochrome in bryophytes. Trends Photochem. & Photobiol. 11: 105–116. Google Scholar

  • [34] Czeczuga B., Czeczuga-Semeniuk E. & Semeniuk A. 2007. The impact of insolation intensity of carotenoid content in variously coloured flower petals. Curr. Topics Phytochem. 8: 47–57. Google Scholar

  • [35] Czeczuga B., Czeczuga-Semeniuk E. & Semeniuk A. 2008. Phycobiliprotein pigments in the cephalodia of Lobaria pulmonaria (L.) Hoffm. From various latitudes. Curr. Topics Phytochem. 9: 89–93. Google Scholar

  • [36] Dring M.J. 1988. Photocontrol of development in algae. Ann. Rev. Plant Physiol. Mol. Biol. 39: 157–174. http://dx.doi.org/10.1146/annurev.pp.39.060188.001105CrossrefGoogle Scholar

  • [37] Ertl L. 1951. Über die Lichtverhaltnisse in Laubflechten. Planta 39: 245–252. http://dx.doi.org/10.1007/BF01909397CrossrefGoogle Scholar

  • [38] Furuya M. 1987. Phytochrome and Photoregulation in Plants. Academic Press, Tokyo. Google Scholar

  • [39] Giles K.L. 1970. The phytochrome system, phenolic compounds, and aplanospore formation in a lichenized strain of Trebouxia. Can. J. Bot. 48: 1343–1346. http://dx.doi.org/10.1139/b70-202CrossrefGoogle Scholar

  • [40] Hampton R.E. 1973. Photosynthetic pigments in Peltigera canina (L.) Willd. from sun and shade habitats. Bryologist 76: 543–545. http://dx.doi.org/10.2307/3241415CrossrefGoogle Scholar

  • [41] Holmes M.G. 1991. Photoreceptor Evolution and Function. Academic Press, London. Google Scholar

  • [42] Hugh A.L.H. & Aarssen L.W. 1997. On the relationship between shade tolerance and shade avoidance strategies in woodland plants. Oikos 80: 575–582. http://dx.doi.org/10.2307/3546632CrossrefGoogle Scholar

  • [43] Huneck S. & Yoshimura I. 1996. Identification of Lichen Substances. Springer Verlag, Berlin. Google Scholar

  • [44] Kärenlampi L. 1970. Distribution of chlorophyll in the lichen Cladonia alpestris. Rep. Kevo Subaret. Res. Stn. 7: 1–8. Google Scholar

  • [45] Kendrick R.E. & Kronenberg G.H.M. 1986. Photomorphogenesis in Plants. Martinus Nijhoff Publ., Dordrecht. Google Scholar

  • [46] Kershaw K.A. 1985. Physiological Ecology of Lichens. Cambridge University Press, Cambridge. Google Scholar

  • [47] Kraus L. & Koch A. 1996. Dünnschichtchromatographic. Springer Verlag, Berlin. Google Scholar

  • [48] Legaz M.E., Vicente C., Ascaso C., Pereira E.G. & Xavier-Filho L. 1986. Pigment analysis of sun and shade populations Cladonia verticillaris. Biochem. System. Ecol. 14: 575–582. http://dx.doi.org/10.1016/0305-1978(86)90036-0CrossrefGoogle Scholar

  • [49] Lindemann P., Braslavsky S.E., Hartmann E. & Schafner K. 1989. Partial purification and initial characterization of phytochrome from the light-grow moss Atrichum undulatum P. Baeuv. Planta 78: 128–136. Google Scholar

  • [50] López-Figueroa F. 1987. Fotorregulaciňn de la sintesis pigmentaria en algas. Ph. D. Thesis, Univ. Malaga, Spain Google Scholar

  • [51] López-Figueroa F., Lindemann P., Braslavsky S.E., Schaffner K., Schneider-Poetsch H.A.W. & Rüdiger W. 1989. Detection of a photochrome-like protein in macroalgae. Bot. Acta 102:178–180. Google Scholar

  • [52] López-Figueroa F. & Niell F.X. 1988. Control de la sintesis de clorofila por el fitocromo y criptocromo en la rodoficea Corallina elongata Ellis et Soland. Rev. Esp. Fisiol. 44: 287–294. Google Scholar

  • [53] MacColl R. & Guard-Friar D. 1987. Phycobiliproteins. CRC Press, Inc., Boca Raton, Florida. Google Scholar

  • [54] Mantoura R.F.C. & Llewellyn C.A. 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal. Chim. Acta 151:297–314. http://dx.doi.org/10.1016/S0003-2670(00)80092-6CrossrefGoogle Scholar

  • [55] Piattelli M. & Giudici de Nicola M. 1968. Anthraquinone pigments from Xanthoria parietina (L.) Th. Fr. Phytochemistry 7: 1183–1187. http://dx.doi.org/10.1016/S0031-9422(00)88268-0CrossrefGoogle Scholar

  • [56] Pisani T., Paoli L., Gaggi C., Pirintsos S.A. & Loppi S. 2007. Effects of high temperature on epiphytic lichens: issues for consideration in a changing climate scenario. Plant Biosyst. 141: 164–169. CrossrefGoogle Scholar

  • [57] Pratt L.H. 1982. Phytochrome: The protein moiety. Ann. Rev. Plant Physiol. Mol. Biol. 33: 557–582. CrossrefGoogle Scholar

  • [58] Ray I.B., Peters G.A., Toia R.E. Jr & Mayne B.C. 1978. Azolla-Anabaena relationship. 7. Distribution of ammonia-assimilating enzymes, protein and chlorophyll between host and symbiont. Plant Physiol. 62: 463–467. http://dx.doi.org/10.1104/pp.62.3.463CrossrefGoogle Scholar

  • [59] Rentschler H. 1967. Photoperiodische Induction der Monosporobiodung bei Porphyra tenera Kjellm. Planta 76: 65–74. http://dx.doi.org/10.1007/BF00387423CrossrefGoogle Scholar

  • [60] Rundel P.W. 1972. CO2 exchange in ecological races of Cladonia subtenuis. Photosyntetica 6: 13–17. Google Scholar

  • [61] Schafer E. & Haupt W. 1985. Blue-light effects in phytochrome-mediated responses. Encyclopedia of plant physiology. Springer Verlag, New-York. Google Scholar

  • [62] Scheibe J. 1972. Photoreversible pigment: occurrence in a blue-green alga. Science 176: 1037–1039. http://dx.doi.org/10.1126/science.176.4038.1037CrossrefGoogle Scholar

  • [63] Schneider-Poetsch H.A.W., Schwarz H., Grimm R. & Rüdiger W. 1988. Cross-reactivity of monoclonal antibodies against phytochrome from Zea and Avena. Localization of epitopes and epitope common to monocotyledons, ferns, mosses and a liverwort. Planta 173: 61–72. http://dx.doi.org/10.1007/BF00394489CrossrefGoogle Scholar

  • [64] Smith H. ed. 1981. Plants and the Daylight Spectrum. Academic Press, New York. Google Scholar

  • [65] Smith H. 1994. Sensing the light environment: the function of the phytochrome family, pp. 377–416. In: Kendrick R.E. & Kronenberg G.H.M. (eds), Photomorphogenesis in Plants, Kluwer, London. Google Scholar

  • [66] Straub O. 1987. Key to Carotenoids. Birkhäuser, Basel. Boston. Google Scholar

  • [67] Tandeau de Marsac N. 1983. Phycobilisomes and complementary chromatic adaptation in cyanobacteria. Bull. Inst. Pasteur 81: 201–254. Google Scholar

  • [68] Taylor A.E. & Bonner B.D. 1967. Isolation of phytochrome from the algae Mesotaenium and liverwort Schaerocarpus. Plant Physiol. 42: 762–766. http://dx.doi.org/10.1104/pp.42.6.762CrossrefGoogle Scholar

  • [69] Tokuhisa J.G., Daniels S.M. & Quail P.H. 1985. Phytochrome in green tissue: spectral and immunochemical evidence for two distinct molecular species of phytochrome in light-grown Avena sativa. Planta 164: 321–332. http://dx.doi.org/10.1007/BF00402943CrossrefGoogle Scholar

  • [70] Tschermak-Woess E. 1988. The Algal Partner, pp. 39–83. In: Galun M., (ed.), Handbook of Lichenology. Vol. 1. CRC Press, Boca Raton, Florida. Google Scholar

  • [71] Vaczi P. & Bartak M. 2006. Photosynthesis of lichen symbiotic alga Trebouxia erici as affected by irradiance and osmotic stress. Biol. Plant. 50: 257–264 (8). http://dx.doi.org/10.1007/s10535-006-0016-2CrossrefGoogle Scholar

  • [72] Valladares F. 2003. Light and the evolution of leaf morphology and physiology. Curr. Top. Pl. Biol. 4: 47–61. Google Scholar

  • [73] Vicente C. 1993. Evolutionary convergence of light perceiving systems. Vision-like cascade process started by phytochrome in lichens. Endocytobiosis & Cell Res. 9: 255–267. Google Scholar

  • [74] Wagner E., Bienger T. & Mohr H. 1967. The increase of phytochrome mediated anthocyanin synthesis in the mustard seedling (Synapsis alba). Planta 75: 1–9. http://dx.doi.org/10.1007/BF00380833CrossrefGoogle Scholar

  • [75] Yokohama Y. 1982. Distribution of the lutein and its derivatives in the marine green algae. Jap. J. Phycol. 30: 311–317. Google Scholar

About the article

Published Online: 2010-06-10

Published in Print: 2010-08-01

Citation Information: Biologia, Volume 65, Issue 4, Pages 587–594, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0058-y.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Knut Asbjørn Solhaug, Li Xie, and Yngvar Gauslaa
Plant and Cell Physiology, 2014, Volume 55, Number 8, Page 1404
Tommaso Pisani, Silvana Munzi, Luca Paoli, Martin Bačkor, Jozef Kováčik, Juraj Piovár, and Stefano Loppi
Chemosphere, 2011, Volume 82, Number 7, Page 1030

Comments (0)

Please log in or register to comment.
Log in