Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 65, Issue 4

Issues

The protozoan toxin climacostol and its derivatives: Cytotoxicity studies on 10 species of free-living ciliates

Federico Buonanno / Claudio Ortenzi
Published Online: 2010-06-10 | DOI: https://doi.org/10.2478/s11756-010-0071-1

Abstract

Climacostol (5-(Z)-non-2-enyl-benzene-1,3-diol) is a natural toxin isolated from the freshwater ciliated protozoan Climacostomum virens and belongs to resorcinolic lipids, a group of compounds that show antimicrobial, antiparasitic, and anticancer activities. We investigated the cytotoxic activity of the chemically synthesized toxin and its alkyl and alkynyl derivatives on C. virens and nine other common species of free-living freshwater ciliates. Our results show that the cytotoxic potency of climacostol can be modulated by the substitution of the double bond present in the aliphatic chain of the toxin with a single or a triple one that was previously obtained during the synthesis of the unsaturated and saturated derivatives of the parent molecule. We demonstrated that the cytotoxicity level of the molecules considered in this study appears to be inversely correlated to the unsaturation level of their aliphatic chains, and that the potency of their action is also related to the target organism.

Keywords: Climacostol; Climacostomum; resorcinols; resorcinolic lipids; cytotoxicity; extrusomes

  • [1] Barbini L., Lopez P., Ruffa J., Martino V., Ferraro G., Campos R. & Cavallaio L. 2006. Induction of apoptosis on human hepatocarcinoma cell lines by an alkyl resorcinol isolated from Lithraea molleoides. World J. Gastroenterol. 7: 5959–5963. Google Scholar

  • [2] Buonanno F. 2005. Variations in the efficiency of ciliate extrusomal toxins against a common ciliate predator, the catenulid Stenostomum sphagnetorum. Ital. J. Zool. 72: 293–295. http://dx.doi.org/10.1080/11250000509356688CrossrefGoogle Scholar

  • [3] Buonanno F. 2009. Antipredator behavior of freshwater microturbellarian Stenostomum sphagnetorum against the predatory ciliate Dileptus margaritifer. Zool. Sci. 26: 443–447. http://dx.doi.org/10.2108/zsj.26.443Web of ScienceCrossrefGoogle Scholar

  • [4] Buonanno F., Quassinti L., Bramucci M., Amantini C., Lucciarini R., Santoni G., Iio H. & Ortenzi C. 2008. The protozoan toxin climacostol inhibits growth and induces apoptosis of human tumor cell lines. Chem.-Biol. Interact. 176: 151–164. DOI 10.1016/j.cbi.2008.07.007 http://dx.doi.org/10.1016/j.cbi.2008.07.007CrossrefGoogle Scholar

  • [5] Buonanno F., Saltalamacchia P. & Miyake A. 2005. Defence function of pigmentocysts in the karyorelictid ciliate Loxodes striatus. Eur. J. Protistol. 41: 151–158. DOI 10.1016/j.ejop.2005.01.001 http://dx.doi.org/10.1016/j.ejop.2005.01.001CrossrefGoogle Scholar

  • [6] Deszcz L. & Kozubek A. 2000. Higher cardol homologs (5-alkylresorcinols) in rye seedings. Biochim. Biophys. Acta 1483: 241–250. Google Scholar

  • [7] Filip P., Anke T. & Sterner O. 2002. 5-(2′-oxoheptadecyl)-resorcinol and 5-(2′-oxononadecyl)-resorcinol, cytotoxic metabolites from a wood-inhabiting basidiomycete. Z. Naturforsch. 57: 1004–1008. Google Scholar

  • [8] Gasiorowski K., Szyba K., Brokos B. & Kozubek A. 1996. Antimutagenic activity of alkylresorcinols from cereal grains. Cancer Letters 106: 109–115. DOI 10.1016/0304-3835(96)04294-2 http://dx.doi.org/10.1016/0304-3835(96)04294-2CrossrefGoogle Scholar

  • [9] Harumoto T., Miyake A., Ishikawa N., Sugibayashi R., Zenfuku K. & Iio H. 1998. Chemical defense by means of pigmented extrusomes in the ciliate Blepharisma japonicum. Eur. J. Protistol. 34: 458–470. CrossrefGoogle Scholar

  • [10] Hausmann K. 1978. Extrusive organelles in protists. Int. Rev. Cytol. 52: 197–276. http://dx.doi.org/10.1016/S0074-7696(08)60757-3CrossrefGoogle Scholar

  • [11] Himejima M. & Kubo J. 1991. Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J. Agric. Food Chem. 39(2): 418–421. DOI 10.1021/jf00002a039 http://dx.doi.org/10.1021/jf00002a039CrossrefGoogle Scholar

  • [12] Itokawa H., Totsuka N., Nakamara K., Maezuru M., Takeya K., Kondo M., Inamatsu M. & Morita H. 1989. A quantitative structure-activity relationship for antitumor activity of longchain phenols from Ginkgo biloba L. Chem. Pharm. Bull. 37: 1619–1621. CrossrefGoogle Scholar

  • [13] Kozubek A. & Tyman J.H.P. 1999. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 99: 1–25. http://dx.doi.org/10.1021/cr970464oCrossrefGoogle Scholar

  • [14] Kozubek A., Zarnowski R., Stasiuk M. & Gubernator J. 2001. Natural amphiphilic phenols as bioactive compounds. Cell. Mol. Biol. Lett. 6: 351–355. Google Scholar

  • [15] Lytollis W., Scannel R.T., An H., Murty V.S., Reddy K.S., Barr J.R. & Hecht S.M. 1995. 5-Alkylresorcinols from Hakea trifurcata that cleave DNA. J. Am. Soc. 117: 12683–12690. DOI 10.1021/ja00156a004 http://dx.doi.org/10.1021/ja00156a004CrossrefGoogle Scholar

  • [16] Masaki M.E., Harumoto T., Terazima M.N., Miyake A., Usuki Y. & Iio H. 1999. Climacostol, a defense toxin of the heterotrich ciliate Climacostomum virens against predators. Tetrahedron Lett. 40: 8227–8229. DOI 10.1016/S0040-4039(99)01722-0 http://dx.doi.org/10.1016/S0040-4039(99)01722-0CrossrefGoogle Scholar

  • [17] Masaki M.E., Hiro S., Usuki Y., Harumoto T., Terazima M.N., Buonanno F., Miyake A. & Iio H. 2004. Climacostol, a defense toxin of Climacostomum virens (Protozoa, Ciliata), and its congeners. Tetrahedron 60: 7041–7048. DOI 10.1016/j.tet.2003.09.105 http://dx.doi.org/10.1016/j.tet.2003.09.105CrossrefGoogle Scholar

  • [18] Miyake A. 1981. Cell interaction by gamones in Blepharisma, pp. 95–129. In: O’Day D.H. & Horgen P.A. (eds), Sexual Interaction in Eukaryotic Microbes, Academic Press, New York. Google Scholar

  • [19] Miyake A. & Beyer J. 1973. Cell interaction by means of soluble factors (gamones) in conjugation of Blepharisma intermedium. Exp. Cell Res. 76: 15–24. DOI 10.1016/0014-4827(73)90413-8 http://dx.doi.org/10.1016/0014-4827(73)90413-8CrossrefGoogle Scholar

  • [20] Miyake A., Buonanno F., Saltalamacchia P., Masaki M.E. & Iio H. 2003. Chemical defence by means of extrusive cortical granules in the heterotrich ciliate Climacostomum virens. Eur. J. Protistol. 39: 25–36. DOI 10.1078/0932-4739-00900 http://dx.doi.org/10.1078/0932-4739-00900CrossrefGoogle Scholar

  • [21] Miyake A., Harumoto T. & Iio H. 2001. Defense function of pigment granules in Stentor coeruleus. Eur. J. Protistol. 37: 77–88. DOI 10.1078/0932-4739-00809 http://dx.doi.org/10.1078/0932-4739-00809CrossrefGoogle Scholar

  • [22] Mori K. & Abe Y. 2001. Simple synthesis of climacostol, a defensive secretion by the ciliate Climacostomum virens. Biosci. Biotechnol. Biochem. 65: 2110–2112. http://dx.doi.org/10.1271/bbb.65.2110CrossrefGoogle Scholar

  • [23] Mukherjee P., Fulton D.B., Halder M., Han X., Armstrong D.W., Petrich J.W. & Lobban C.S. 2006. Maristentorin, a novel pigment from the positively phototactic marine ciliate Maristentor dinoferus, is structurally related to hypericin and stentorin. J. Phys. Chem. 110: 6359–6364. CrossrefGoogle Scholar

  • [24] Picardo M., Passi S., Nazzaro-Porro M., Breathnach A., Zompetta C., Faggioni A. & P. Riley. 1987. Mechanism of antitumoral activity of catechols in culture. Biochem. Pharmacol. 36(4): 417–425. DOI 10.1016/0006-2952(87)90345-5 http://dx.doi.org/10.1016/0006-2952(87)90345-5CrossrefGoogle Scholar

  • [25] Pucciarelli S., Buonanno F., Pellegrini G., Ballarini P. & Miceli C. 2008. Biomonitoring of Lake Garda: Identification of ciliate species and symbiotic algae responsible for the “black-spot” bloom during the summer of 2004. Environ. Res. 107(2): 194–200. DOI 10.1016/j.envres.2008.02.001 http://dx.doi.org/10.1016/j.envres.2008.02.001CrossrefWeb of ScienceGoogle Scholar

  • [26] Singh U.S., Scannel R.T., An H., Carter B.J. & Hecht S.M. 1995. DNA cleavage by di- and trihydroxyalkylbenzenes. Characterization of products and the roles of O2, Cu(II), and alkali. J. Am. Soc. 117: 12691–12699. DOI 10.1021/ja00156a005 http://dx.doi.org/10.1021/ja00156a005CrossrefGoogle Scholar

  • [27] Suresh M. & Ray R.K. 1990. Cardol: the antifilarian principle from Anacardium occidentale. Curr. Sci. 59: 477–479. Google Scholar

  • [28] Suzuki, Y., Esumi Y., Uramoto M., Kono Y. & Sakurai A. 1997. Structural analyses of carbon chains in 5-alk(en)ylresorcinols of rye and wheat whole flour by tandem mass spectrometry. Biosci. Biotech. Biochem. 61: 480–486. http://dx.doi.org/10.1271/bbb.61.480CrossrefGoogle Scholar

  • [29] Terazima M.N. & Harumoto T. 2004. Defense function of pigment granules in the ciliate Blepharisma japonicum against two predatory protists, Amoeba proteus (Rhizopodea) and Climacostomum virens (Ciliata). Zool. Sci. 21: 823–828. http://dx.doi.org/10.2108/zsj.21.823CrossrefGoogle Scholar

About the article

Published Online: 2010-06-10

Published in Print: 2010-08-01


Citation Information: Biologia, Volume 65, Issue 4, Pages 675–680, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0071-1.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Elisabetta Catalani, Federico Buonanno, Gabriele Lupidi, Silvia Bongiorni, Riccardo Belardi, Silvia Zecchini, Matteo Giovarelli, Marco Coazzoli, Clara De Palma, Cristiana Perrotta, Emilio Clementi, Giorgio Prantera, Enrico Marcantoni, Claudio Ortenzi, Anna Maria Fausto, Simona Picchietti, and Davide Cervia
Frontiers in Chemistry, 2019, Volume 7
[2]
Federico Buonanno, Elisabetta Catalani, Davide Cervia, Francesca Proietti Serafini, Simona Picchietti, Anna Fausto, Simone Giorgi, Gabriele Lupidi, Federico Rossi, Enrico Marcantoni, Dezemona Petrelli, and Claudio Ortenzi
Toxins, 2019, Volume 11, Number 1, Page 42
[3]
Federico Buonanno, Andrea Anesi, Graziano Di Giuseppe, Graziano Guella, and Claudio Ortenzi
Zoological Science, 2017, Volume 34, Number 1, Page 42
[4]
Elisabetta Catalani, Francesca Proietti Serafini, Silvia Zecchini, Simona Picchietti, Anna Maria Fausto, Enrico Marcantoni, Federico Buonanno, Claudio Ortenzi, Cristiana Perrotta, and Davide Cervia
Pharmacological Research, 2016, Volume 113, Page 409
[5]
Yoshihiko Sera, Miyuki Eiraku Masaki, Matsumi Doe, Federico Buonanno, Akio Miyake, Yoshinosuke Usuki, and Hideo Iio
Chemistry Letters, 2015, Volume 44, Number 5, Page 633
[6]
Cristiana Perrotta, Federico Buonanno, Silvia Zecchini, Alessio Giavazzi, Francesca Proietti Serafini, Elisabetta Catalani, Laura Guerra, Maria Cristina Belardinelli, Simona Picchietti, Anna Maria Fausto, Simone Giorgi, Enrico Marcantoni, Emilio Clementi, Claudio Ortenzi, and Davide Cervia
Scientific Reports, 2016, Volume 6, Number 1
[7]
Andrea Anesi, Federico Buonanno, Graziano di Giuseppe, Claudio Ortenzi, and Graziano Guella
European Journal of Organic Chemistry, 2016, Volume 2016, Number 7, Page 1330
[9]
Federico Buonanno, Andrea Anesi, Graziano Guella, Santosh Kumar, Daizy Bharti, Antonietta La Terza, Luana Quassinti, Massimo Bramucci, and Claudio Ortenzi
Journal of Eukaryotic Microbiology, 2014, Volume 61, Number 3, Page 293
[10]
Luana Quassinti, Francesco Ortenzi, Enrico Marcantoni, Massimo Ricciutelli, Giulio Lupidi, Claudio Ortenzi, Federico Buonanno, and Massimo Bramucci
Chemico-Biological Interactions, 2013, Volume 206, Number 1, Page 109
[12]
Federico Buonanno, Graziano Guella, Cristian Strim, and Claudio Ortenzi
Hydrobiologia, 2012, Volume 684, Number 1, Page 97
[13]
Yoshinori Muto, Yumiko Tanabe, Kiyoshi Kawai, Yukio Okano, and Hideo Iio
Open Life Sciences, 2011, Volume 6, Number 1

Comments (0)

Please log in or register to comment.
Log in