Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 65, Issue 5

Issues

A cytological observation of the fluid in the primo-nodes and vessels on the surfaces of mammalian internal organs

Baeckkyoung Sung
  • Biomedical Physics Laboratory, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747, Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Min Kim
  • Department of Veterinary Surgery, College of Veterinary Medicine, Chonbuk National University, Jeonju, 561-756, Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Byung-Cheon Lee
  • Biomedical Physics Laboratory, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747, Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Seong-Hun Ahn / Sung-Yeoun Hwang / Kwang-Sup Soh
  • Biomedical Physics Laboratory, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747, Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-08-12 | DOI: https://doi.org/10.2478/s11756-010-0099-2

Abstract

We report on the preliminary cytological observation of fluid in the primo-nodes and vessels on the surfaces of the internal organs of mammals. With some microsurgical procedures, we observed many cells and microcells that spread out of the nodes on the organ surfaces of rats and rabbits. These cells generally showed the following morphologies: (1) round or oval cells, 10 μm in size, with predominantly little cytoplasm; (2) cells with nuclei that exhibited a collapsed shape; (3) binucleated cells, 20 μm in size; (4) spherical granules, ranging 0.5–2.0 μm in size (primo-microcells); and (5) aggregations of such granules. These findings on the existence of cells with diverse morphologies in the fluid of primo-nodes and vessels could be evidence supporting the hypothesis that the anatomical basis of acupuncture meridians (i.e., primo-vascular system) may be a migration channel for various kind of cells.

Keywords: cytological morphology; body fluid; organ surface; primo-node and vessel; cell migration; acupuncture

  • [1] Alvarez D., Vollmann E.H. & von Adrian U.H. 2008. Mechanisms and consequences of dendritic cell migration. Immunity 29: 325–342. DOI 10.1016/j.immuni.2008.08.006 http://dx.doi.org/10.1016/j.immuni.2008.08.006Web of ScienceCrossrefGoogle Scholar

  • [2] Baik K.Y., Lee J., Lee B.C., Johng H.M., Nam T.J., Sung B., Cho S. & Soh K.S. 2005. Acupuncture meridian and intravascular Bonghan duct. Key Eng. Mater. 277–279: 125–129. http://dx.doi.org/10.4028/www.scientific.net/KEM.277-279.125CrossrefGoogle Scholar

  • [3] Baik K.Y., Ogay V., Jeoung S.C. & Soh K.S. 2009. Visualization of Bonghan microcells by electron and atomic force microscopy. J. Acupunct. Meridian Stud. 2(2): 124–129. http://dx.doi.org/10.1016/S2005-2901(09)60044-3CrossrefGoogle Scholar

  • [4] Chan S.H.H. 1984. What is being stimulated in acupuncture: Evaluation of the existence of a specific substrate. Neurosci. Biobehav. Rev. 8: 25–33. DOI 10.1016/0149-7634(84)90018-6 http://dx.doi.org/10.1016/0149-7634(84)90018-6CrossrefGoogle Scholar

  • [5] Fujiwara S. 1967. Discovery of Acupuncture Meridians. Sogensha, Osaka. [in Japanese] Google Scholar

  • [6] Han H.J., Sung B., Ogay V. & Soh K.S. 2009. The flow path of Alcian blue from the acupoint BL23 to the surface of abdominal organs. J. Acupunct. Meridian Stud. 2(3): 182–189. http://dx.doi.org/10.1016/S2005-2901(09)60053-4CrossrefGoogle Scholar

  • [7] Hong E.K. 2008. The cytopathology of body cavity fluid. Kor. J. Cytopathol. 19(2): 72–85. [in Korean with an English abstract] http://dx.doi.org/10.3338/kjc.2008.19.2.72CrossrefGoogle Scholar

  • [8] Kang Y.J. 2008. Herbogenomics: From traditional Chinese medicine to novel therapeutics. Exp. Biol. Med. 233(9): 1059–1065. http://dx.doi.org/10.3181/0802-MR-47CrossrefGoogle Scholar

  • [9] Kepner R.L. Jr. & Pratt J.R. 1994. Use of fluorochromes for direct enumeration of total bacteria in environmental samples — past and present. Microbiol. Rev. 58(4): 603–615. Google Scholar

  • [10] Kim B.H. 1965. The sanal theory. J. Acad. Med. Sci. DPR Kor. 108: 39–62. [in Korean] Google Scholar

  • [11] Kwon J., Baik K.Y., Lee, B.C., Soh K.S., Lee, N.J. & Kang C. 2007. Scanning probe microscopy study of microcells from the organ surface Bonghan corpuscle. Appl. Phys. Lett. 90: 173903–173903-3. DOI 10.1063/1.2732183 http://dx.doi.org/10.1063/1.2732183Web of ScienceCrossrefGoogle Scholar

  • [12] Lee B.C., Park E.S., Baik K.Y., Johng H.M., Nam T.J., Lee J., Sung B., Choi C., Yi S.H., Park W.H., Park D.H., Yoon Y.S. & Soh K.S. 2004. Acridine orange staining method to reveal characteristic features of intravascular threadlike structure. Anat. Rec. 278B: 27–30. http://dx.doi.org/10.1002/ar.b.20018CrossrefGoogle Scholar

  • [13] Lee B.C., Yoo J.S., Baik K.Y., Sung B., Lee J. & Soh K.S. 2008. Development of a fluorescence stereomicroscope and observation of Bong-Han corpuscles inside blood vessels. Ind. J. Exp. Biol. 46(5): 330–335. Google Scholar

  • [14] Lee B.C., Yoo J.S., Ogay V., Kim K.W., Dobberstein H., Soh K.S. & Chang B.S. 2007. Electron microscopic study of novel threadlike structures on the surfaces of mammalian organs. Microsc. Res. Tech. 70: 34–43. http://dx.doi.org/10.1002/jemt.20383Web of ScienceCrossrefGoogle Scholar

  • [15] Ogay V., Baik K.Y., Lee B.C. & Soh K.S. 2006. Characterization of DNA-containing granules flowing through the acupuncture meridian system of rabbits. Acupunct. Electrother. Res. 31:13–31. Google Scholar

  • [16] Shang C. 2001. Electrophysiology of growth control and acupuncture. Life Sci. 68: 1333–1342. DOI 10.1016/S0024-3205(00)01032-8 http://dx.doi.org/10.1016/S0024-3205(00)01032-8CrossrefGoogle Scholar

  • [17] Shin H.S., Johng H.M., Lee B.C., Cho S.I., Soh K.S., Baik K.Y., Yoo J.S. & Soh K.S. 2005. Feulgen reaction study of novel threadlike structures (Bonghan ducts) on the surfaces of mammalian organs. Anat. Rec. 284B(1): 35–40. http://dx.doi.org/10.1002/ar.b.20061CrossrefGoogle Scholar

  • [18] Sung B., Kim M.S., Corrigan A., Donald A.M. & Soh K.S. 2009. In situ microextration method to determine the viscosity of biofluid in threadlike structures on the surfaces of mammalian organs. Phys. Rev. E 79: 022901-1–022901-3. DOI 10.1103/PhysRevE.79.022901 http://dx.doi.org/10.1103/PhysRevE.79.022901Web of ScienceCrossrefGoogle Scholar

  • [19] Sung B., Kim M.S., Lee B.C., Yoo J.S., Lee S.H., Kim Y.J., Kim K.W. & Soh K.S. 2008. Measurement of flow speed in the channels of novel threadlike structures on the surfaces of mammalian organs. Naturwissenschaften 95: 117–124. DOI 10.1007/s00114-007-0300-9 http://dx.doi.org/10.1007/s00114-007-0300-9CrossrefWeb of ScienceGoogle Scholar

  • [20] Ventura C. 2005. CAM and cell fate targeting: Molecular and energetic insights into cell growth and differentiation. Evidence-based Compl. Alt. Med. 2(3): 277–283. http://dx.doi.org/10.1093/ecam/neh100CrossrefGoogle Scholar

  • [21] Wang X., Liang X.B., Li F.Q., Zhou H.F., Liu X.Y., Wang J.J. & Wang X.M. 2008. Therapeutic strategies for Parkinson’s disease: The ancient meets the future — Traditional Chinese herbal medicine, electroacupuncture, gene therapy and stem cells. Neurochem. Res. 33(10): 1956–1963. DOI 10.1007/s11064-008-9691-z http://dx.doi.org/10.1007/s11064-008-9691-zCrossrefWeb of ScienceGoogle Scholar

  • [22] Yoo J.S., Kim M.S., Sung B., Lee B.C., Soh K.S., Lee S.H., Kim Y.J. & Dobberstein H. 2007. Cribriform structure with channels in the acupuncture meridian-like system on the organ surfaces of rabbits. Acupunct. Electrother. Res. 32(1/2): 130–132. Google Scholar

About the article

Published Online: 2010-08-12

Published in Print: 2010-10-01


Citation Information: Biologia, Volume 65, Issue 5, Pages 914–918, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0099-2.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Chae Jeong Lim, Jong-Hyun Yoo, Yongbaek Kim, So Yeong Lee, and Pan Dong Ryu
Evidence-Based Complementary and Alternative Medicine, 2013, Volume 2013, Page 1
[3]
Byung-Cheon Lee, Baeckkyoung Sung, Ki-Hoon Eom, Eun-Sung Park, Min Su Kim, Se Hoon Kim, Vyacheslav Ogay, Ki Woo Kim, Yeonhee Ryu, Yeo-Sung Yoon, and Kwang-Sup Soh
Connective Tissue Research, 2013, Volume 54, Number 2, Page 94
[4]
Miroslav Stefanov and Jungdae Kim
Journal of Acupuncture and Meridian Studies, 2012, Volume 5, Number 5, Page 193
[5]
Byung-Cheon Lee, Ho-Sung Lee, and Dae-In Kang
Journal of Acupuncture and Meridian Studies, 2012, Volume 5, Number 4, Page 183
[6]
Tae Hee Han, Chae Jeong Lim, Jae-Hong Choi, So Yeong Lee, and Pan Dong Ryu
Journal of Acupuncture and Meridian Studies, 2010, Volume 3, Number 4, Page 241
[7]
Jong Hyun Jung, Baeckkyoung Sung, and Kwang-Sup Soh
Connective Tissue Research, 2011, Volume 52, Number 6, Page 487
[8]
Jae-Hong Choi, Chae Jeong Lim, Tae Hee Han, Seul Ki Lee, So Yeong Lee, and Pan Dong Ryu
The Journal of Membrane Biology, 2011, Volume 239, Number 3, Page 167

Comments (0)

Please log in or register to comment.
Log in