Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 65, Issue 6

Issues

Molecular phylogeny of Ranunculaceae based on rbc L sequences

Ying-fan Cai / Sheng-wei Li / Min Chen / Ming-feng Jiang / Yi Liu / Yong-fang Xie / Quan Sun / Huai-zhong Jiang / Neng-wen Yin / Ling Wang / Rui Zhang / Cheng-lin Huang / Kairong Lei
Published Online: 2010-10-15 | DOI: https://doi.org/10.2478/s11756-010-0105-8

Abstract

A phylogenetic tree was constructed by sequencing rbcL genes of 33 species representing 19 genera of Ranunculaceae, and three related species, Mahonia bealei, Mahonia fortunei and Nandina domestica. The results showed that the rbcL sequences of these Ranunculaceae range from 1,346 bp to 1,393 bp. The results based on the phylogenetic tree indicated that Caltha and Trollius should not be put in the same tribe, and a close relationship between Adonis and Trollius is supported by our research, while Aquilegia should be in Thalictroideae. In combination with the morphological and chemical evidence, the generic classification of Ranunculaceae should be revised into five subfamilies: Hydrastidoideae, Coptidoideae, Helleboroideae, Thalictroideae and Ranunculoideae. We demonstrate that the rbcL gene is of great value for investigating generic to subfamilial relationships in Ranunculaceae.

Keywords: phylogeny; Ranunculaceae; rbcL

  • [1] Bill J.G., Ashley S., Gary W.B., Keith W., Philip B., Ryan Y., Leslie B.S., Martha A.H., Yudong T. & Sreekhar C. 2007. Effect of goldenseal (Hydrastis canadensis) and kava kava (Piper methysticum) supplementation on digoxin pharmacokinetics in humans. Drug Metab. Dispos. 35: 240–245. Web of ScienceGoogle Scholar

  • [2] Bousquet J., Strauss S.H. & Doerksen A.H. 1992. Extensive variation in evolutionary rate of gene sequences among seed plants. Proc. Natl. Acad. Sci. USA 89: 784–788. http://dx.doi.org/10.1073/pnas.89.16.7844CrossrefGoogle Scholar

  • [3] Delecctis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita 1979. Flora Reipublicae Popularis Sinicae, Tomus 27, Science Press, Beijing, 502 pp. Google Scholar

  • [4] Drummond J.R. & Hutchinsom J. 1920. A revision of Isopyrum (Ranunculaceae) and its nearer allies. Kew Bull. 1920: 145–169. Google Scholar

  • [5] Fu D.Z. 1990. Phylogenetic considerations on the subfamily Thalictroideae (Ranunculaceae). Cathaya 2: 181–190. Google Scholar

  • [6] Gu T.Q. & Ren Y. 2007. Floral Morphogenesis of Coptis (Ranunculaceae) 24: 80–86. Google Scholar

  • [7] Hillis D.M. & Bull J.J. 1993. An empirical test of bootstrapping as amethod for assessing confidence in phylogenetic analysis. Syst. Biol. 42: 182–192. CrossrefGoogle Scholar

  • [8] Hoot S.B. 1991. Phylogeny of the Ranunculaceae based on epidermal microcharacters and macromorphology. Syst. Bot. 16:741–755. http://dx.doi.org/10.2307/2418876CrossrefGoogle Scholar

  • [9] Hoot S.B. 1995. Phylogeny of the Ranunculaceae based on preliminary atpB, rbcL and 18S nuclear ribosomal DNA sequence data. Pl. Syst. Evol. (Suppl.) 9: 241–251. Google Scholar

  • [10] Hutchinson J. 1923. Contributions towards a phylogenetic classification of flowering plants I. Kew Bull. 1923: 65–89. Google Scholar

  • [11] Jensen U. 1966. Die Verwandtschaftsverhaltnisse innerhalb der Ranunculaceae aus serologischer Sicht. Ber Deutsch Bot. Ges. 79: 407–412. Google Scholar

  • [12] Jensen U. 1968. Serologische Beitrage zur Systematik der Ranunculaceae. Bot. Jahrb. 88: 269–310. Google Scholar

  • [13] Kellogg E.A. & Juliano N.D. 1997. The structure and function of RuBisCO and their implications for systematic studies. Amer. J. Bot. 84: 413–428. http://dx.doi.org/10.2307/2446015CrossrefGoogle Scholar

  • [14] Kumar S., Tamura K. & Nei M. 1993. ’MEGA: Molecular Evolutionary Genetics Analysis’, Version 1.01. The Pennsylvania State Univ., University Park, PA. Google Scholar

  • [15] Lehnebach C.A., Cano A., Monsalve C., McLenachan P., Horandl E. & Lockhart P. 2007. Phylogenetic relationships of the monotypic Peruvian genus Laccopetalum (Ranunculaceae). Pl. Syst.Evol. 264: 109–116. http://dx.doi.org/10.1007/s00606-006-0488-8CrossrefGoogle Scholar

  • [16] Loconte H. & Estes J.R. 1989. Phylogenetic systematics of Berberidaceae and Ranunculales (Magnoliidae). Syst. Bot. 14: 565–579. http://dx.doi.org/10.2307/2419001CrossrefGoogle Scholar

  • [17] Loconte H., Campbell L.M. & Stevenson D.W. 1995. Ordinal and familial relationships of Ranunculid genera. Pl. Syst. Evol. (Suppl.) 9: 99–118. Google Scholar

  • [18] Nei M. 1991. Relative efficiencies of different tree-making methods for molecular data, pp. 90–128. In: Miyamoto M.M. & Cracraft J., (eds), Phylogenetic Analysis of DNA Sequences, Oxford Univ. Press, New York. Google Scholar

  • [19] Peng Y., Chen S.B., Chen S.L. & Xiao P.G. 2006a. Preliminary pharmaphylogenetic study on Ranunculaceae. China Journal of Chinese Materia Medica 31: 1124–1128. Google Scholar

  • [20] Peng Y., Chen S.B., Liu Y., Wang L.W. & Xiao P.G. 2006b. Preliminary pharmaphylogenetic study on Isopyroideae (Ranunculaceae). China Journal of Chinese Materia Medica 31: 1210–1214. Google Scholar

  • [21] Ritland K. & Clegg M.T. 1987. Evolutionary analysis of plant DNA sequences. Amer. Naturalist 30: 74–100. CrossrefGoogle Scholar

  • [22] Ro K.E., Keener C.S. & Mcpheron B.A. 1997. Molecular phylogenetic study of the Ranunculaceae: Utility of the nuclear 26S ribosomal DNA in inferring intrafamiliar relationships. Mol. Phyl. Evol.8: 117–127. http://dx.doi.org/10.1006/mpev.1997.0413CrossrefGoogle Scholar

  • [23] Ro K.E. & Mcpheron B.A. 1997. Molecular phylogeny of the Aquilegia group (Ranunculaceae) based on internal transcribed spacers and 5.8S nuclear ribosomal DNA. Biochem. Syst. Ecol 25: 445–461. http://dx.doi.org/10.1016/S0305-1978(97)00029-XGoogle Scholar

  • [24] Rzhetsky A. & Nei M. 1992. A simple method for estimating and testing minimum-evolution trees. Mol. Biol. Evol. 9: 945–967. Google Scholar

  • [25] Saitou N. & Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425. Web of ScienceGoogle Scholar

  • [26] Smith G.H. 1928. Vascular anatomy of ranalian flowers, II. Ranunculaceae (continued), Menispermaceae, Calycanthaceae, Annonaceae. Bot. Gaz.85: 152–177. http://dx.doi.org/10.1086/333831CrossrefGoogle Scholar

  • [27] Song P. Tian X.H. & Ren Y. 2007. Floral morphogenesis of Caltha and Trollius (Ranunculaceae) and its systematic significance. Acta Phytotax. Sin. 45: 769–782. http://dx.doi.org/10.1360/aps06164CrossrefGoogle Scholar

  • [28] Sun A.C. & Wang F.X. 1983. Contribution to the morphology and embryology of Asteropyrum peltatum. Bot. Res. 1: 85–90. Google Scholar

  • [29] Tamura M. 1966. Morphology, ecology and phylogeny of the Ranunculaceae. VI. Sci. Rep. Osaka Univ. 15: 13–35. Google Scholar

  • [30] Tamura M. 1968. Morphology, ecology and phylogeny of the Ranunculaceae VIII. Sci. Rep. Osaka Univ. 17: 41–56. Google Scholar

  • [31] Tamura M. 1987. A classification of genus Clematis. Acta Phytotax. Geobot. 38: 33–44. Google Scholar

  • [32] Tamura M. 1990. A new classification of the family Ranunculaceae I. Acta Phytotax. Geobot. 41: 93–101. Google Scholar

  • [33] Tamura M. 1992. A new classification of the family Ranunculaceae 3. Acta Phytotax. Geobot. 43: 53–58. Google Scholar

  • [34] Tamura M. 1993. Ranunculaceae, pp. 563–583. In: Kubitzki K. et al. (eds), The Families and Genera of Vascular Plants, Vol.2. Springer-Verlag, Berlin. Google Scholar

  • [35] Tamura M. 1995. Angiospermae. Ordnung Ranunculales. Fam. Ranunculaceae. II. Systematic Part, pp. 223–519. In: Hiepko P. (ed.), Natürliche Pflanzenfamilien, second ed., 17aIV. Duncker & Humblot, Berlin, Germany. Google Scholar

  • [36] Tian X. & Li D.Z. 2002. Application of DNA sequences in plant phylogenetic study. Acta Bot. Yunnan. 24: 170–184. Google Scholar

  • [37] Wang W., Li R.Q. & Chen Z.D. 2005. Systematic position of Asteropyrum (Ranunculaceae) inferred from chloroplast and nuclear sequences. Pl. Syst. Evol. 225: 41–54. http://dx.doi.org/10.1007/s00606-005-0339-zCrossrefGoogle Scholar

  • [38] Wang W.T., Li L.Q. & Wang Z. 1999. Notulae de Ranunculaceis sinensibus (XI). Acta Phytotax. Sin. 37: 209–219. Google Scholar

  • [39] Wang X.Q., Hong D.Y. & Li Z.Y. 1993. A study on pollen and seed coat in the tribe Cimicifugeae and some allied genera (Ranuncutaceae). Cathaya 5: 131–149. Google Scholar

  • [40] Wang X.Q., Deng Z.R. & Hong D.Y. 1998. The systematic position of Beesia: evidence from ITS (nrDNA) sequence analysis. Acta Phytotax. Sin. 36: 403–410. Google Scholar

  • [41] Wu Z.Y., Lu A.M. & Tang Y.C. 2003. The Families and Genera of Angiosperms in China, A Comprehensive Analysis. Science Press, Beijing, 378 pp. Google Scholar

  • [42] Xi Y.Z., Ning J.C. & Fu X.P. 1993. Pollen morphology of the tribe Trollieae and its taxonomic significance. Cathaya 5: 115–130. Google Scholar

  • [43] Xiao P.G.. & Wang W.T. 1964. A new genus of Ranunuclaceae — Dichocarpum. Acta Phytotax. Sin.9: 315–333. Google Scholar

  • [44] Xiao P.G. 1980. A preliminary study of the correlation between phylogeny, chemical constituents and pharmaceutical aspects in the taxa of Chinese Ranunculaceae. Acta Phytotax. Sin. 18: 143–153 Google Scholar

  • [45] Yang Q.E., Gong X., Gu Z.J. & Wu Q.A. 1993. A karyomorphological study of five species in the Ranunculaceae from Yunnan, with a special consideration on systematic positions of Asteropyrum and Calathodes. Acta Bot. Yunnan. 15: 179–190. Google Scholar

  • [46] Yang Q.E., Luo Y.B. & Hong D.Y. 1994. A karyotypic study of six species in the Ranunculaceae from Hunan in China. Guihaia 14: 27–36. Google Scholar

  • [47] Yang Q.E. 2001. Cytology of 12 species in Aconitum L. and of 18 species in Delphinium L. of the tribe Delphineae (Ranunculaceae) from China. Acta Phytotax. Sin. 39: 502–514 Google Scholar

  • [48] Zurawski G. & Clegg M.T. 1987. Evolution of higher-plant chloroplast DNA-coded genes: Implications for structure-function and phylogenetic studies. Ann. Rev. Pl. Phys. 38: 391–418. http://dx.doi.org/10.1146/annurev.pp.38.060187.002135CrossrefGoogle Scholar

About the article

Published Online: 2010-10-15

Published in Print: 2010-12-01


Citation Information: Biologia, Volume 65, Issue 6, Pages 997–1003, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0105-8.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Gábor Sramkó, Levente Laczkó, Polina A. Volkova, Richard M. Bateman, and Jelena Mlinarec
Molecular Phylogenetics and Evolution, 2019, Volume 135, Page 45
[2]
Wei Zhai, Xiaoshan Duan, Rui Zhang, Chunce Guo, Lin Li, Guixia Xu, Hongyan Shan, Hongzhi Kong, and Yi Ren
Molecular Phylogenetics and Evolution, 2019, Volume 135, Page 12
[3]
Woo-Chul Jung and Kweon Heo
Korean Journal of Plant Taxonomy, 2017, Volume 47, Number 2, Page 137
[4]
Samuli Lehtonen, Maarten J. M. Christenhusz, and Daniel Falck
Botanical Journal of the Linnean Society, 2016, Volume 182, Number 4, Page 825
[5]
Kyong-Sook Chung, Byoung-Un Oh, Myung Soon Park, Bo Mi Nam, and Gyu Young Chung
Caryologia, 2013, Volume 66, Number 2, Page 128
[6]
Valerie L. Soza, Johanne Brunet, Aaron Liston, Patricia Salles Smith, and Verónica S. Di Stilio
Molecular Phylogenetics and Evolution, 2012, Volume 63, Number 1, Page 180

Comments (0)

Please log in or register to comment.
Log in