Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 65, Issue 6

Issues

Uptake-related parameters as indices of phytoremediation potential

Hema Diwan / Altaf Ahmad / Muhammad Iqbal
  • Molecular Ecology Laboratory, Department of Botany, Faculty of Science Jamia Hamdard, New Delhi, 110062, India
  • Department of Plant Production, College of Food & Agricultural Sciences, King Saud University, PO Box 2460, Riyadh, 11451, Saudi Arabia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-10-15 | DOI: https://doi.org/10.2478/s11756-010-0106-7

Abstract

Phytoremediation is emerging as an alternative agriculture-based technology because remediation of metalpolluted sites can be brought about utilizing the ability of plants to uptake and store contaminants in them. A field study was conducted to assess the role of Indian mustard in phytoremediation of chromium-contaminated substrata. Uptake parameters, namely, bio-concentration factor, translocation index, Cr distribution within plant, and tolerance index were used in determining the remediation potential of the crop. A significant increase in Cr accumulation (0.64–4.19 mg g−1 DW, stem; and 0.77–1.1 mg Cr g−1 DW, root), coupled with high tolerance indices, was observed in response to Cr stress, thus showing that Indian mustard is a potential hyperaccumulator. Movement and subsequent distribution of metal ions in the plant were assessed by studying the translocation index which showed a consistent increase (27–87% at T5) with time, and bioconcentration factor, where also an increase over a time period was observed in stem (1.3–11.4, T1) and root (1.96–5.56, T1), thereby, depicting the strong ability of Indian mustard for phytoextraction. A significant decline, however, was observed in the bioconcentration factor with increase in the dose of Cr application.

Keywords: chromium; metal uptake; phytoremediation; tolerance index; bioconcentration factor

  • [1] Audet P. & Charest C. 2007. Heavy metal phytoremediation from a meta-analytical perspective. Environ. Pollut. 147: 231–237. http://dx.doi.org/10.1016/j.envpol.2006.08.011Web of ScienceCrossrefGoogle Scholar

  • [2] Anjum N.A., Umar S., Ahmad A., Iqbal M. & Khan N.A. 2009. Ontogenic variation in response of Brassica campestris L. to cadmium toxicity. J. Plant Interac. 3: 189–198. http://dx.doi.org/10.1080/17429140701823164CrossrefGoogle Scholar

  • [3] Ansari M.K.A., Ahmad A., Umar S. & Iqbal M. 2009. Mercury-induced changes in growth variables and antioxidative enzyme activities in Indian mustard. J. Plant Interac. 4: 131–136. http://dx.doi.org/10.1080/17429140802716713CrossrefGoogle Scholar

  • [4] Baker A.J.M. & Brooks R.R. 1989. Terrestrial higher plants which hyperaccumulate metallic elements a review of their distribution, ecology and phytochemistry. Biorecovery. 1: 81–126. Google Scholar

  • [5] Baker A.J.M., Mc Grath S.P., Sideli C.M.D. & Reeves R.D. 1994. The possibility of in-situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recycl. 11: 41–49. http://dx.doi.org/10.1016/0921-3449(94)90077-9CrossrefGoogle Scholar

  • [6] Baker A.J.M., McGrath S.P., Reeves R.D. & Smith J.A.C. 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils, pp. 85–107. In: Terry N. & Baelos G. (eds), Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca Raton, FL. Google Scholar

  • [7] Begonia M.T., Begonia G.B., Ighoavodha M. & Gilliard D. 2005. Lead accumulation by tall fescue (Festuca arundinacea Schreb.) grown on a lead-contaminated soil Int. J. Environ. Res. Public Health 2: 228–233. http://dx.doi.org/10.3390/ijerph2005020005CrossrefGoogle Scholar

  • [8] Bluskov S., Arocena J.M., Omotoso O.O. & Young J.P. 2005. Uptake, distribution, and speciation of chromium in Brassica juncea. Inter. J. Phyto. 7: 153–165 http://dx.doi.org/10.1080/16226510590950441CrossrefGoogle Scholar

  • [9] Calabrese E.J. & Baldwin L.A. 2003. Inorganics and hormesis. Crit. Rev. Toxicol. 33: 215–304. http://dx.doi.org/10.1080/713611040CrossrefGoogle Scholar

  • [10] Chatterjee J. & Chatterjee C. 2000. Phtotoxicity of cobalt, chromium, and copper in cauliflower. Environ. Pollut. 109: 69–74. http://dx.doi.org/10.1016/S0269-7491(99)00238-9CrossrefGoogle Scholar

  • [11] Davies F.T., Puryear J.D., Newton R.J., Egilla J.N. & Saraiva Grossi J.A. 2001. Mycorrhiza fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J. Plant Physiol. 158: 777–786. http://dx.doi.org/10.1078/0176-1617-00311CrossrefGoogle Scholar

  • [12] Diwan H., Ahmad A. & Iqbal M. 2008. Genotypic variation in the phytoremediation potential of Indian mustard for chromium. Environ. Manage. 41: 734–741. http://dx.doi.org/10.1007/s00267-007-9020-3CrossrefWeb of ScienceGoogle Scholar

  • [13] Diwan H., Ahmad A. & Iqbal M. 2010a. Chromium-induced modulation in the antioxidant defense system during phenological growth stages of Indian mustard. Int. J. Phyto. 12: 142–158. http://dx.doi.org/10.1080/15226510903213951CrossrefGoogle Scholar

  • [14] Diwan H., Ahmad A. & Iqbal M. 2010b. Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regul. 61: 97–107. http://dx.doi.org/10.1007/s10725-010-9454-0Web of ScienceCrossrefGoogle Scholar

  • [15] Foy C.D. 1984. Physiological effects of hydrogen, aluminium, and manganese toxicities in acid soil, pp. 57–97. In: Adams F. (ed), Soil Acidity and Liming, second edition. Madison WI: Agronomy Monograph N12, ASA-CSSA-SSSA Publisher. Google Scholar

  • [16] Gardea-Torresdey J.L., Peralta-Videa J.R., Montes M., de la Rosa G. & Corral-Diaz B. 2004. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L: impact on plant growth and uptake of nutritional elements. Biores. Tech. 92: 229–235. http://dx.doi.org/10.1016/j.biortech.2003.10.002CrossrefGoogle Scholar

  • [17] Gardea-Torresdey J.L., de la Rosa G., Peralta Videa J.R., Montes M., Cruz Jimenez G. & Cano-Aguilera. 2005. Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Arch. Environ. Contam. Toxicol. 48: 225–232. http://dx.doi.org/10.1007/s00244-003-0162-xCrossrefGoogle Scholar

  • [18] Ghosh M. & Singh S.P. 2005. Comparative uptake and phytoextraction study of soil induced chromium by accumulator and high biomass weed species. App. Ecol. Environ. Research. 3: 67–79. CrossrefGoogle Scholar

  • [19] Ghosh S. & Rhyne C. 1999. Influence of EDTA on Pb uptake in two weed species, Sesbania and Ipomoea, in hydroponic culture. J. Mississippi Acad. Sci. 44: 11. Google Scholar

  • [20] Goldbold D.L. & Kettner C. 1991. Lead influences root growth and mineral nutrition of Picea abies seedlings. J. Plant Physiol. 139: 95–99. CrossrefGoogle Scholar

  • [21] Jain SK, Vasudevan P. & Jha N. 1990. Azolla pinnata R. Br. and Lemna minor L. for removal of lead and zinc from polluted water. Wat. Res. 24: 177–83. http://dx.doi.org/10.1016/0043-1354(90)90100-KCrossrefGoogle Scholar

  • [22] Kamal M., Ghaly A.E., Mahmoud N. & Cote R. 2004. Phytoaccumulation of heavy metals by aquatic plants. Environ. Int. 29: 1029–1039. http://dx.doi.org/10.1016/S0160-4120(03)00091-6CrossrefGoogle Scholar

  • [23] Khan I., Ahmad A. & Iqbal M. 2009. Modulation of antioxidant defense system for arsenic detoxification in Indian mustard. Ecotoxi. Environ. Safety 72: 626–634. http://dx.doi.org/10.1016/j.ecoenv.2007.11.016CrossrefWeb of ScienceGoogle Scholar

  • [24] Lu X., Kruatrachue M., Pokethitiyook P. & Homyok K. 2004. Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Science Asia. 30: 93–103. http://dx.doi.org/10.2306/scienceasia1513-1874.2004.30.093CrossrefGoogle Scholar

  • [25] Lytle C.M., Lytle F.W., Yang N., Qian J., Hansen D. & Zayed A. 1998. Reduction of Cr (VI) to Cr (III) by wetland plants: potential for in situ heavy metal detoxification. Environ. Sci. Tech. 32: 3087–3093. http://dx.doi.org/10.1021/es980089xCrossrefGoogle Scholar

  • [26] Madhaiyan M., Poonguzhali S. & Tongmin S. 2007. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere. 69: 220–228. http://dx.doi.org/10.1016/j.chemosphere.2007.04.017CrossrefWeb of ScienceGoogle Scholar

  • [27] Mohan D. & Pittman C.U. 2006. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. B137: 762–811. http://dx.doi.org/10.1016/j.jhazmat.2006.06.060CrossrefGoogle Scholar

  • [28] Newman M.C. & Unger M.A. 2003. Fundamentals of Ecotoxicology. 2nd Ed., Lewis Publishers, Boca Raton, FL. Google Scholar

  • [29] Nriagu J.O. 1988. Production and uses of chromium, pp. 81–105. Chromium in natural and human environment. John Wiley and Sons, New York, USA. Google Scholar

  • [30] Reeves R.D. & Baker A.J.M. 2000. Metal-accumulating plants, pp. 193–229. In: Raskin I. & Ensley B.D. (eds), Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. John Wiley & Sons. Google Scholar

  • [31] Salt D.E., Smith R.D. & Raskin I. 1998. Phytoremediation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49: 643–648. http://dx.doi.org/10.1146/annurev.arplant.49.1.643CrossrefGoogle Scholar

  • [32] Singh S. & Sinha S. 2005. Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxi. Environ. Safety 62: 118–127. http://dx.doi.org/10.1016/j.ecoenv.2004.12.026CrossrefGoogle Scholar

  • [33] Shahandeh H. & Hossner L.R. 2000. Plant screening for chromium phytoremediation. Int. J. Phytoremed. 2: 31–51. http://dx.doi.org/10.1080/15226510008500029CrossrefGoogle Scholar

  • [34] Shanker A.K., Cervantes C., Loza-Tavera H. & Avudainayagam S. 2005. Chromium toxicity in plants. Environ. Inter. 31: 739–753. http://dx.doi.org/10.1016/j.envint.2005.02.003CrossrefGoogle Scholar

  • [35] Skeffington R.A., Shewry P.R. & Peterson P.J. 1976. Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta 132: 209–214. http://dx.doi.org/10.1007/BF00399719CrossrefGoogle Scholar

  • [36] Solis-Dominguez F.A., Gonzalez-Chavez M.C., Carrillo-Gonzalez R. & Rodriguez-Vazquez R. 2007. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. J. Hazar. Mater. 141: 630–636. http://dx.doi.org/10.1016/j.jhazmat.2006.07.014Web of ScienceCrossrefGoogle Scholar

  • [37] Srivastavaa S. & Thakur I.S. 2006. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biol. Biochem. 38: 1904–1911. http://dx.doi.org/10.1016/j.soilbio.2005.12.016CrossrefGoogle Scholar

  • [38] Wallace A., Alexander G.V. & Chaudhry F.M. 1977. Phytotoxicity of cobalt, vanadium, titanium, silver, and chromium. Commun. Soil Sci. Plan. 8: 752–756. Google Scholar

  • [39] Wang Q., Cui Y. & Dong Y. 2002. Phytoremediation of polluted waters: Potentials and prospects of wetland plants. Acta Biotechnol. 22: 199–208. http://dx.doi.org/10.1002/1521-3846(200205)22:1/2<199::AID-ABIO199>3.0.CO;2-TCrossrefGoogle Scholar

  • [40] Wilkins D.A. 1957. A technique for the measurement of lead tolerance in plants. Nature. 180: 37–38. http://dx.doi.org/10.1038/180037b0CrossrefGoogle Scholar

  • [41] Wilkins D.A. 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytol. 80: 623–633. http://dx.doi.org/10.1111/j.1469-8137.1978.tb01595.xCrossrefGoogle Scholar

  • [42] Ximenez-Embun P. Rodriguez-Sanz B., Madrid-Albarran Y. & Camara C. 2001. Uptake of heavy metals by lupin plants in artificially contaminated sand: preliminary results. Inter. J. Environ. Anal. Chem. 82: 805–813. http://dx.doi.org/10.1080/0306731021000102275CrossrefGoogle Scholar

  • [43] Zayed A., Gowthaman S. & Terry N. 1998. Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J. Environ. Quality 27: 715–721. http://dx.doi.org/10.2134/jeq1998.00472425002700030032xCrossrefGoogle Scholar

  • [44] Zayed A.M. & Terry N. 2003. Chromium in the environment: factors affecting biological remediation. Plant Soil. 249: 139–156. http://dx.doi.org/10.1023/A:1022504826342CrossrefGoogle Scholar

  • [45] Zhang W., Cai Y., Tu C. & Ma L.Q. 2002. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci. Total Environ. 300: 167–177. http://dx.doi.org/10.1016/S0048-9697(02)00165-1CrossrefGoogle Scholar

  • [46] Zhu Y.L., Zayed A.M., Qian J.H., Souza M. & Terry N. 1999. Phytoremediation of trace elements by wetland plants: II. Water hyacinth. J. Environ. Qual. 28: 339–44. http://dx.doi.org/10.2134/jeq1999.00472425002800010042xCrossrefGoogle Scholar

  • [47] Zurayk R., Sukkariyah B., Baalbaki R. & Ghanem D.A. 2001. Chromium phytoaccumulation from solution by selected hydrophytes. Inter. J. Phytoremed. 3: 335–350. http://dx.doi.org/10.1080/15226510108500063CrossrefGoogle Scholar

  • [48] Zu Y.Q., Li Y., Chen J.J., Chen H.Y., Qin L. & Schvartz C. 2005. Hyperaccumulation of Pb, Zn, and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ. Int. 31: 755–762. http://dx.doi.org/10.1016/j.envint.2005.02.004CrossrefGoogle Scholar

About the article

Published Online: 2010-10-15

Published in Print: 2010-12-01


Citation Information: Biologia, Volume 65, Issue 6, Pages 1004–1011, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0106-7.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hafida Baoune, Juan Daniel Aparicio, Adrian Acuña, Aminata Ould El Hadj-khelil, Leandro Sanchez, Marta Alejandra Polti, and Analia Alvarez
Ecotoxicology and Environmental Safety, 2019, Volume 184, Page 109591
[2]
Yaping Zhang, Fangzhou Li, Weiwei Xu, Jinghua Ren, Sihui Chen, Kai Shen, and Zhen Long
Bulletin of Environmental Contamination and Toxicology, 2019, Volume 103, Number 1, Page 147
[3]
Rijwana Parwin and Kakoli Karar Paul
Journal of Environmental Engineering, 2019, Volume 145, Number 6, Page 04019023
[4]
Asil Nurzhanova, Valentina Pidlisnyuk, Kamila Abit, Chingiz Nurzhanov, Bulat Kenessov, Tatyana Stefanovska, and Larry Erickson
Environmental Science and Pollution Research, 2019, Volume 26, Number 13, Page 13320
[5]
Eduardo González-Valdez, Alejandro Alarcón, Ronald Ferrera-Cerrato, Héctor René Vega-Carrillo, María Maldonado-Vega, Miguel Ángel Salas-Luévano, and Rosalba Argumedo-Delira
Ecotoxicology and Environmental Safety, 2018, Volume 154, Page 180
[6]
Tamara E. Romanova and Olga V. Shuvaeva
Water, Air, & Soil Pollution, 2016, Volume 227, Number 6
[7]
Fenghua Wang, Guangyuan Li, Jia Guo, and Shuangchen Chen
International Journal of Environmental Science and Development, 2016, Volume 7, Number 9, Page 676
[8]
Valentina Iori, Muriel Gaudet, Francesco Fabbrini, Fabrizio Pietrini, Isacco Beritognolo, Giusi Zaina, Giuseppe Scarascia Mugnozza, Massimo Zacchini, Angelo Massacci, and Maurizio Sabatti
Trees, 2016, Volume 30, Number 1, Page 125
[9]
Tamara E. Romanova, Olga v. Shuvaeva, and Ludmila a. Belchenko
International Journal of Phytoremediation, 2016, Volume 18, Number 2, Page 190
[10]
Fabrizio Pietrini, Valentina Iori, Daniele Bianconi, Giovanni Mughini, Angelo Massacci, and Massimo Zacchini
Journal of Environmental Management, 2015, Volume 162, Page 221
[11]
M. Elektorowicz and Z. Keropian
International Journal of Phytoremediation, 2015, Volume 17, Number 6, Page 521
[12]
Muhammad Iqbal, Altaf Ahmad, M.K.A. Ansari, M.I. Qureshi, Ibrahim M. Aref, P.R. Khan, S.S. Hegazy, Hashim El-Atta, Azamal Husen, and Khalid R. Hakeem
Environmental Reviews, 2015, Volume 23, Number 1, Page 44
[13]
G. Masciandaro, C. Macci, E. Peruzzi, B. Ceccanti, and S. Doni
Reviews in Environmental Science and Bio/Technology, 2013, Volume 12, Number 4, Page 399
[14]
Murty S. Kambhampati and Van Tu Vu
Bulletin of Environmental Contamination and Toxicology, 2013, Volume 91, Number 3, Page 310

Comments (0)

Please log in or register to comment.
Log in