Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 65, Issue 6


Early successional pathways in the Tatra Mountains (Slovakia) forest ecosystems following natural disturbances

Rudolf Šoltés / Jozef Školek / Zuzana Homolová / Zuzana Kyselová
Published Online: 2010-10-15 | DOI: https://doi.org/10.2478/s11756-010-0110-y


Large scale windstorms disturbed forest ecosystems in the Tatra Mountains in 2004, and were followed by a severe fire in 2005. A long-term study on the vegetation successional dynamics of the area was launched immediately after the 2005 event. Relevé plots were established under five different disturbance and management treatments: windthrow left, windthrow removed, hydrologically managed, burnt and reference. We used weighted Ellenberg’s indicator plant values for ordination analyses of the following environmental gradients: light, temperature, continentality, moisture, acidity, nitrogen. Successional patterns depended on the management treatment. Heavily burnt areas were colonized by plants disseminated by airborn diasporas, mainly by Chamaerion angustifolium, less burnt or unburnt localities were settled by plants germinating from the soil seed bank or by plants surviving by root system. Nitrophilous weed vegetation invaded plots with increased moisture (fallen or standing overstory vegetation or irrigated by man-made system) and nitrogen (burnt or windthrow removal). The felled-area species were recorded in each plot. Abundant natural regeneration was observed in plots with increased moisture. The moss layer disappeared soon after the disturbance events. The results presented here refer to a very early successional stage, new insights into initial successional paterns are gained.

Keywords: forest disturbance; ordination analysis; permanent plots; succession; Tatra Mountains; Slovakia

  • [1] Abrams M.D. 1992. Fire and the Development of Oak Forests. Bioscience 42: 346–353. http://dx.doi.org/10.2307/1311781CrossrefGoogle Scholar

  • [2] Barkman J.J., Doing H. & Segal S. 1964. Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Bot. Nederl. 13: 394–419. Google Scholar

  • [3] Bergeron Y., Leduc A., Harvey B.D. & Gauthier S. 2002. Natural fire regime: A guide for sustainable management of the Canadian boreal forest. Silva Fenn. 36(1): 81–95. Google Scholar

  • [4] Bevilaqua D. 2000. Požiare v Národnom parku Slovenský raj. Enviromagazín 2/5: 10–11. Google Scholar

  • [5] Bishoff W.A., Mayer S., Schrumpf M. & Freibauer A. 2009. Nutrient leaching from soils affected by windfall in the High Tatra, pp. 8–12. In: Fleischer P. & Matejka F. (eds), Proceedings of the 3rd Workshop Windfall Research in the TANAP, 2008. Google Scholar

  • [6] Cissel J.H., Swanson F.J. & Weisberg P.J. 1999. Landscape management using historical fire regimes: Blue river, Oregon. Ecol. Appl. 9(4): 1217–1231. http://dx.doi.org/10.1890/1051-0761(1999)009[1217:LMUHFR]2.0.CO;2CrossrefGoogle Scholar

  • [7] Glavac V. 1972. Zur Plannung von geobotanischen Dauerbeobachtungsflächen in Waldschutzgebieten. Nat. Landsch. 47: 139–143. Google Scholar

  • [8] Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W. & Paulissen D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Botanica XVIII. Verlag Erich Golze, Göttingen, pp. 9–166. Google Scholar

  • [9] Fischer A. 1992. Long term vegetation development in Bavarian Mountain Forest ecosystems following natural destruction. Vegetatio 103: 93–104. Google Scholar

  • [10] Flachbart V. 2001. Prečo znova horelo v Národnom parku Slovenský raj? Les 57: 22. Google Scholar

  • [11] Fleischer P. & Koreň M. 2008. Windfall research in the Tatra Mts. — purpose, objectives and status, pp. 95–116. In: Fleischer P. & Matejka F. (eds), Proceedings of the 2nd Workshop Windfall Research in the TANAP, 2007. Google Scholar

  • [12] Halpern Ch.B. 1988. Early successional pathways and the resistence and resilience of forest communities. Ecology 69: 1703–1715. http://dx.doi.org/10.2307/1941148CrossrefGoogle Scholar

  • [13] Harper K., Bergeron Y., Gauthier S. & Drapeau P. 2002. Post-fire development of canopy structure and composition in black spruce forests of Abitibi, Québec: A landscape scale study. Silva Fenn. 36(1): 249–263. Google Scholar

  • [14] Holécy J., Tuček J., Škvarenina J. & Minďáš J. 2004. Výskyt lesných požiarov v Národnom parku Slovenský raj, výsledky štatistickej analýzy, pp. 76–85. In: Divok F. (ed.), Zborník referátov k 40. výročiu ochrany prírody v Národnom parku Slovenský raj, Zvolen. Google Scholar

  • [15] Holeksa J., Zielonka T. & Żiwiec M. 2008. Modeling the decay of coarse woody debris in a subalpine Norway spruce forest of the West Carpathians, Poland. Can. J. For. Res. 38/3: 415–428. http://dx.doi.org/10.1139/X07-139Web of ScienceCrossrefGoogle Scholar

  • [16] Jančova M. 1993. Prirodzená obnova lesného spoločenstva požiarom poškodenej časti ŠPR “Kyseľ” v národnom parku Slovenský raj 1994. Zborník referátov zo seminára v Záhorskej Bystrici 6–8 apríl 1993, pp. 73–79 Google Scholar

  • [17] Jančová M. 2006. Prirodzená obnova lesa na plochách poškodených požiarom na príklade Národnej prírodnej rezervácie Kyseľ. Technická univerzita vo Zvolene, 66 pp. Google Scholar

  • [18] Jane G.T. 1986. Wind damage as an ecological process in mountain beech forests of Canterbury, New Zealand. New Zeal. J. Ecol. 9: 25–39 Google Scholar

  • [19] Kubinská A. & Janovicová K. 1998. Bryophytes, pp. 297–332. In: Marhold K. & Hindák F. (eds), Checklist of non-vascular and vascular plants of Slovakia, Veda, Bratislava. Google Scholar

  • [20] Kuuluvainen T. & Rouvinen S. 2000. Post-fire understory regeneration in boreal Pinus sylvestris forest sites with different fire histories. J. Veg. Sci. 11: 801–812. http://dx.doi.org/10.2307/3236550CrossrefGoogle Scholar

  • [21] Magová D., Škvarenina J. & Ďurkovičová J. 2009. Hodnotenie chemizmu pramenných vôd na kalamitných plochách v TANAPe v rokoch 2005/2007, pp. 128–137. In: Fleischer, P. & Matejka, F. (eds), Proceedings of the 3rd Workshop Windfall Research in the TANAP, 2008. Google Scholar

  • [22] Marhold K. 1998. Ferns and flowering plants, pp. 333–687. In: Marhold K. & Hindák F. (eds), Checklist of non-vascular and vascular plants of Slovakia, Veda, Bratislava. Google Scholar

  • [23] Mišíková N., Fleischer P. & Škvarenina J. 2009. Hodnotenie pôdnej respirácie na kalamitných plochách v TANAPe, pp. 157–164. In: Fleischer P. & Matejka F. (eds), Proceedings of the 3rd Workshop Windfall Research in the TANAP, 2008. Google Scholar

  • [24] Novotný J. 1998. Keď les vstáva z popola. Les 54:1–2. Google Scholar

  • [25] Ryu S.R., Chen J., Zheng D., Bresee M. K. & Crow T. 2006. Simulating the effect of prescribed burning on fuel loading and timber production (EcoFL) in managed northern Wisconsin forests. Ecol. Model. 196: 395–406. http://dx.doi.org/10.1016/j.ecolmodel.2006.02.013CrossrefGoogle Scholar

  • [26] Ryu S.R., Chen J., Zheng D. & Lacroix J.J. 2007. Relating surface fire spread to landscape structure: An application of FAR-SITE in a managed forest landscape. Landscape and Urban Planning 83: 275–283. http://dx.doi.org/10.1016/j.landurbplan.2007.05.002Web of ScienceCrossrefGoogle Scholar

  • [27] Ryu S.R., Concilio A., Chen J., North M. & Ma S. 2009. Prescribed burning and mechanical thinning effects on belowground conditions and soil respiration in a mixed-conifer forest, California. Forest Ecol. Manage 257/4: 1324–1332. http://dx.doi.org/10.1016/j.foreco.2008.11.033CrossrefWeb of ScienceGoogle Scholar

  • [28] ter Braak C.J.F. & Šmilauer P. 2002. CANOCO reference manual and CanoDraw for Windows users guide. Software for canonical community ordination (version 4.5). Biometris, Wageningen & České Budějovice, 500 pp. Google Scholar

  • [29] Veblen T.T., Hadley K.S., Reid M.S. & Rebertus A.J. 1989. Blowdown and stand development in a Colorado subalpine forest. Can. J. For. Res. 19/10: 1218–1225. Google Scholar

About the article

Published Online: 2010-10-15

Published in Print: 2010-12-01

Citation Information: Biologia, Volume 65, Issue 6, Pages 958–964, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0110-y.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Peter Čuchta, Dana Miklisová, and Ľubomír Kováč
Forest Ecology and Management, 2019, Volume 433, Page 504
Jaroslav Vido, Tsegaye Tadesse, Zbyšek Šustek, Radoslav Kandrík, Miriam Hanzelová, Jaroslav Škvarenina, Jana Škvareninová, and Michael Hayes
Advances in Meteorology, 2015, Volume 2015, Page 1
Marek Renčo, Andrea Čerevková, Zuzana Homolová, and Erika Gömöryová
Forest Ecology and Management, 2015, Volume 356, Page 243
Andrea Mojzes, Péter Csontos, and Tibor Kalapos
Acta Oecologica, 2015, Volume 65-66, Page 24
Veronika Urbanovičová, Dana Miklisová, and Ľubomír Kováč
Journal of Mountain Science, 2014, Volume 11, Number 2, Page 449
Patrick Griffiths, Tobias Kuemmerle, Matthias Baumann, Volker C. Radeloff, Ioan V. Abrudan, Juraj Lieskovsky, Catalina Munteanu, Katarzyna Ostapowicz, and Patrick Hostert
Remote Sensing of Environment, 2014, Volume 151, Page 72
Jana Lóšková, Peter Ľuptáčik, Dana Miklisová, and Ľubomír Kováč
Biologia, 2013, Volume 68, Number 5
Jana Lóšková, Peter Ľuptáčik, Dana Miklisová, and Ľubomír Kováč
European Journal of Soil Biology, 2013, Volume 55, Page 131
Miho Morimoto, Junko Morimoto, Yoshiaki Moriya, and Futoshi Nakamura
Landscape and Ecological Engineering, 2013, Volume 9, Number 2, Page 259
Peter Čuchta, Dana Miklisová, and Ľubomír Kováč
Environmental Monitoring and Assessment, 2013, Volume 185, Number 6, Page 5085
Peter Čuchta, Dana Miklisová, and Ľubomír Kováč
European Journal of Soil Biology, 2012, Volume 50, Page 151

Comments (0)

Please log in or register to comment.
Log in