Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 65, Issue 6

Issues

Molecular analysis of a type III polyketide synthase gene in Fallopia multiflora

Shu-Jing Sheng
  • School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
  • Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou, 510010, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhong-Yu Liu
  • School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
  • Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou, 510010, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wei Zhao
  • School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
  • Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou, 510010, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Li Shao
  • School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
  • Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou, 510010, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shu-Jin Zhao
  • Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou, 510010, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-10-15 | DOI: https://doi.org/10.2478/s11756-010-0113-8

Abstract

A type III polyketide synthase (PKS) cDNA and the corresponding gene (FmPKS) were isolated from the rhizomes of Fallopia multiflora (Thunb.) (Polygonaceae). The full-length FmPKS cDNA was 1,228 bp, containing an open reading frame of 1,137 bp encoding a 378 amino acid residues long protein. The coding sequence of the gene was interrupted by three introns, a different gene structure from most of the type III PKS genes studied so far containing only one intron at a conserved site, except for the recently cloned gene PcPKS2 from Polygonum cuspidatum. Phylogenetic analysis revealed that it shares a close relationship with Rheum tataricum stilbene synthase and formes a group with functionally diverse chalcone synthase-like enzymes. Southern blotting showed that there are three to four copies of the FmPKS gene in the genome. The expression pattern of the FmPKS transcript was determined by Northern blotting and high expression levels were detected in rhizomes and old stems, while the lowest levels were found in old leaves, a pattern that strongly correlates with the accumulation of the major bioactive principles called 2,3,5,4’-tetra-hydroxy-stilbene-2-O-β-D-glucoside, suggesting that FmPKS might play an important role in its biosynthesis.

Keywords: Fallopia multiflora; Polygonaceae; polyketide synthase; stilbene synthase; intron; 2,3,5,4’-tetra-hydroxystilbene-2-O-β-D-glucoside

  • [1] Abe I., Takahashi Y., Morita H. & Noguchi H. 2001. Benzalacetone synthase. A novel polyketide synthase that plays a crucial role in the biosynthesis of phenylbutanones in Rheum palmatum. Eur. J. Biochem. 268: 3354–3359. http://dx.doi.org/10.1046/j.1432-1327.2001.02255.xCrossrefGoogle Scholar

  • [2] Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410. Google Scholar

  • [3] Arnold K., Bordoli L., Kopp J. & Schwede T. 2006. The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195–201. http://dx.doi.org/10.1093/bioinformatics/bti770CrossrefGoogle Scholar

  • [4] Austin M.B. & Noel J.P. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20: 79–110. http://dx.doi.org/10.1039/b100917fCrossrefWeb of ScienceGoogle Scholar

  • [5] Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2010. GenBank. Nucleic Acids Res. 38(Database issue): D46–D51. http://dx.doi.org/10.1093/nar/gkp1024CrossrefGoogle Scholar

  • [6] Buchanan B.B., Gruissem W., Jones R.L. (eds) 2002. Biochemistry & Molecular Biology of Plants. American Society of Plant Physiologists, Waldorf. Google Scholar

  • [7] Chen K.S., Li F., Xu C.J., Zhang S.L. & Fu C.X. 2004. An efficient macro-method of genomic DNA isolation from Actinidia chinensis leaves. Yi Chuan 26: 529–531. Google Scholar

  • [8] China Pharmacopoeia Committee. (eds) 2005. Chinese Pharmacopoeia of the People’s Republic of China (1). Chemical Industry Press, Beijing. Google Scholar

  • [9] Flores-Sanchez I.J. & Verpoorte R. 2009. Plant polyketide synthases: a fascinating group of enzymes. Plant Physiol. Biochem. 47: 167–174. http://dx.doi.org/10.1016/j.plaphy.2008.11.005CrossrefWeb of ScienceGoogle Scholar

  • [10] Geourjon C. & Deleage G. 1995. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Applic. Biosci. 11: 681–684. Google Scholar

  • [11] Jeanmougin F., Thompson J.D., Gouy M., Higgins D.G. & Gibson T.J. 1998. Multiple sequence alignment with Clustal X. Trends Biochem Sci. 23: 403–405. http://dx.doi.org/10.1016/S0968-0004(98)01285-7CrossrefGoogle Scholar

  • [12] Jez J.M., Austin M.B., Ferrer J., Bowman M.E., Schroder J. & Noel J.P. 2000. Structural control of polyketide formation in plant-specific polyketide synthases. Chem. Biol. 7: 919–930. http://dx.doi.org/10.1016/S1074-5521(00)00041-7CrossrefGoogle Scholar

  • [13] Jez J.M., Bowman M.E. & Noel J.P. 2002. Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. Proc. Natl. Acad. Sci. USA 99: 5319–5324. http://dx.doi.org/10.1073/pnas.082590499CrossrefGoogle Scholar

  • [14] Koduri P.K., Gordon G.S., Barker E.I., Colpitts C.C., Ashton N.W. & Suh D.Y. 2010. Genome-wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens. Plant Mol. Biol. 72: 247–263. http://dx.doi.org/10.1007/s11103-009-9565-zWeb of ScienceCrossrefGoogle Scholar

  • [15] Lin L.C., Nalawade S.M., Mulabagal V., Yeh M.S. & Tsay H.S. 2003. Micropropagation of Polygonum multiflorum THUNB and quantitative analysis of the anthraquinones emodin and physcion formed in in vitro propagated shoots and plants. Biol. Pharm. Bull. 26: 1467–1471. http://dx.doi.org/10.1248/bpb.26.1467CrossrefGoogle Scholar

  • [16] Ma L.Q., Pang X.B., Shen H.Y., Pu G.B., Wang H.H., Lei C.Y., Wang H., Li G.F., Liu B.Y. & Ye H.C. 2009. A novel type III polyketide synthase encoded by a three-intron gene from Polygonum cuspidatum. Planta 229: 457–469. http://dx.doi.org/10.1007/s00425-008-0845-7Web of ScienceCrossrefGoogle Scholar

  • [17] Maruyama I.N., Rakow T.L. & Maruyama H.I. 1995. cRACE: a simple method for identification of the 5’ end of mRNAs. Nucleic Acids Res. 23: 3796–3797. http://dx.doi.org/10.1093/nar/23.18.3796Google Scholar

  • [18] Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425. Web of ScienceGoogle Scholar

  • [19] Samappito S., Page J.E., Schmidt J., De-Eknamkul W. & Kutchan T.M. 2003. Aromatic and pyrone polyketides synthesized by a stilbene synthase from Rheum tataricum. Phytochemistry 62: 313–323. http://dx.doi.org/10.1016/S0031-9422(02)00545-9CrossrefGoogle Scholar

  • [20] Sommer H. & Saedler H. 1986. Structure of the chalcone synthase gene of Antirrhinum majus. Mol. Gen. Genet. 202: 429–434. http://dx.doi.org/10.1007/BF00333273CrossrefGoogle Scholar

  • [21] Tamura K., Dudley J., Nei M. & Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599. http://dx.doi.org/10.1093/molbev/msm092CrossrefGoogle Scholar

  • [22] Tropf S., Lanz T., Rensing S.A., Schröder J. & Schröder G. 1994. Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J. Mol. Evol. 38: 610–618. http://dx.doi.org/10.1007/BF00175881CrossrefGoogle Scholar

  • [23] Wang T., Gu J., Wu P.F., Wang F., Xiong Z., Yang Y.J., Wu W.N., Dong L.D. & Chen J.G. 2009. Protection by tetrahydroxystilbene glucoside against cerebral ischemia: involvement of JNK, SIRT1, and NF-kappaB pathways and inhibition of intracellular ROS/RNS generation. Free Radical Biol. Med. 47: 229–240. http://dx.doi.org/10.1016/j.freeradbiomed.2009.02.027CrossrefWeb of ScienceGoogle Scholar

  • [24] Watanabe K., Praseuth A.P. & Wang C.C. 2007. A comprehensive and engaging overview of the type III family of polyketide synthases. Curr. Opin. Chem. Biol. 11: 279–286. http://dx.doi.org/10.1016/j.cbpa.2006.11.041CrossrefWeb of ScienceGoogle Scholar

  • [25] Yang P.Y., Almofti M.R., Lu L., Kang H., Zhang J., Li T.J., Rui Y.C., Sun L.N. & Chen W.S. 2005. Reduction of atherosclerosis in cholesterol-fed rabbits and decrease of expressions of intracellular adhesion molecule-1 and vascular endothelial growth factor in foam cells by a water-soluble fraction of Polygonum multiflorum. J. Pharmacol. Sci. 99: 294–300. http://dx.doi.org/10.1254/jphs.FP0050333CrossrefGoogle Scholar

  • [26] Yao S., Li Y. & Kong L. 2006. Preparative isolation and purification of chemical constituents from the root of Polygonum multiflorum by high-speed counter-current chromatography. J. Chromatogr. A 1115: 64–71. http://dx.doi.org/10.1016/j.chroma.2006.02.071CrossrefGoogle Scholar

  • [27] Zheng D. & Hrazdina G. 2008. Molecular and biochemical characterization of benzalacetone synthase and chalcone synthase genes and their proteins from raspberry (Rubus idaeus L.). Arch. Biochem. Biophys. 470: 139–145. http://dx.doi.org/10.1016/j.abb.2007.11.013Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2010-10-15

Published in Print: 2010-12-01


Citation Information: Biologia, Volume 65, Issue 6, Pages 939–946, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0113-8.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Chuanhong Wang, Shuang Zhi, Changying Liu, Fengxiang Xu, Aichun Zhao, Xiling Wang, Yanhong Ren, Zhengang Li, and Maode Yu
Journal of Agricultural and Food Chemistry, 2017, Volume 65, Number 8, Page 1659
[5]
Lei Chen, Shu-Jing Sheng, Xue-mei Tan, Yan-Jing Shen, Hong-qing Li, and Shu-jin Zhao
Preparative Biochemistry and Biotechnology, 2012, Volume 42, Number 1, Page 87

Comments (0)

Please log in or register to comment.
Log in