Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 65, Issue 6

Issues

Protective roles of exogenous polyamines on chromosomal aberrations in Hordeum vulgare exposed to salinity

Selma Tabur / Kıymet Demir
Published Online: 2010-10-15 | DOI: https://doi.org/10.2478/s11756-010-0118-3

Abstract

The effects of exogenous polyamines (PAs): spermine (Spm), spermidine (Spd), cadaverine (Cad) and putrescine (Put) on mitotic activity and chromosomal aberrations in root meristem cells of Hordeum vulgare L. (barley) seeds exposed to salinity were analyzed. The PAs significantly inhibited cell division in distilled water. Furthermore, most of these PAs (except for Spd) caused a significant increase in the frequency of chromosomal aberrations as compared to control group. Seeds treated with Put caused the highest percentage of mitotic abnormalities in total. The negative effect of salinity on mitotic index and the frequency of chromosomal aberrations increased with increasing salt concentration. PAs studied could not be successful in ameliorating of the negative effect of salinity on mitotic activity. Particularly, exposure to Cad and 0.40 M NaCl caused a complete block of cell division in total. However, most of the PA studied showed a perfectly performance in alleviating the detrimental effects of increasing salinity on chromosomal aberrations.

Keywords: chromosomal aberrations; Hordeum vulgare L.; barley; mitotic index; polyamines; salt stress

  • [1] Ali R.M. 2000. Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Sci. 152: 173–179. http://dx.doi.org/10.1016/S0168-9452(99)00227-7CrossrefGoogle Scholar

  • [2] Al-Karaki G.N. 2001. Germination, sodium and potassium concentration of barley seeds as influenced by salinity. J. Plant Nutr. 24: 511–522. http://dx.doi.org/10.1081/PLN-100104976CrossrefGoogle Scholar

  • [3] Anuradha S. & Rao S.S.R. 2001. Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). J. Plant Growth Regul. 33: 151–153. http://dx.doi.org/10.1023/A:1017590108484CrossrefGoogle Scholar

  • [4] Ashraf M.Y., Sarwar G., Ashraf M., Afaf R. & Satar A. 2002. Salinity induced changes in α-amylase activity during germination and early cotton seedling growth. Biol. Plant. 45: 589–591. http://dx.doi.org/10.1023/A:1022338900818CrossrefGoogle Scholar

  • [5] Avalbaev A.M., Bezrukova M.V., Kildibekova A.R., Fatkhutdinova R.A. & Shakirova F.M. 2003. Wheat germagglutinin restores cell division and growth of wheat seedlings under salinity. Bulg. J. Plant Physiol. Special Issue: 257–263. Google Scholar

  • [6] Besnard-Wibant C., Noin M. & Zeevaart J.A.D. 1983. Mitotic activities and levels of nuclear DNA in the apical meristem of Silene armeria (strain SI.2) following application of gibberellin. Plant Cell Physiol. 24: 1269–1279. Google Scholar

  • [7] Bouchereau A., Aziz A., Larher F. & Martin-Tanguy J. 1999. Polyamines and environmental challenges: recent development. Plant Sci. 140: 103–125. http://dx.doi.org/10.1016/S0168-9452(98)00218-0CrossrefGoogle Scholar

  • [8] Braun J.W. & Khan A.A. 1976. Alleviation of salinity and high temperature stress by plant growth regulators permeated into lettuce seeds via acetone. J. Am. Soc. Hortic. Sci. 101: 716–721. Google Scholar

  • [9] Cassán F., Maiale S., Masciarelli O., Vidal A., Luna V. & Ruiz O. 2009. Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur. J. Soil Biol. 45: 12–19. http://dx.doi.org/10.1016/j.ejsobi.2008.08.003CrossrefGoogle Scholar

  • [10] Costa G. & Bagni N. 1983. Effects of polyamines on fruit-set of apple. Hortic. Sci. 18: 59–61. Google Scholar

  • [11] Çavuşooğlu K. & Kabar K. 2007. The effects of pretreatment of some plant growth regulators on germinating and seedling growth of radish seeds under saline conditions. J. Social Sci. (Dumlupinar University) 14: 27–36. Google Scholar

  • [12] Çavuşooğlu K., Kılıç S. & Kabar K. 2007. Some morphological and anatomical observations during alleviation of salinity (NaCl) stress on seed germination and seedling growth of barley by polyamines. Acta Physiol. Plant 29: 551–557. http://dx.doi.org/10.1007/s11738-007-0066-xCrossrefGoogle Scholar

  • [13] Çavuşooğlu K., Kılıç S. & Kabar K. 2008. Effects of some plant growth regulators on stem anatomy of radish seedlings grown under saline (NaCl) conditions. Plant Soil Environ. 54: 428–433. Google Scholar

  • [14] Dash M. & Panda S.K. 2001. Salt stress induced changes in growth and enzyme activities in germinating Phaseolus muingo seeds. Biol. Plant. 44: 587–589. http://dx.doi.org/10.1023/A:1013750905746CrossrefGoogle Scholar

  • [15] Duan J., Li J., Guo S. & Kang Y. 2008. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J. Plant Physiol. 165: 1620–1635. http://dx.doi.org/10.1016/j.jplph.2007.11.006CrossrefGoogle Scholar

  • [16] Duncan D.B. 1955. Multiple range and multiple F tests. Biometrics 11: 1–42. http://dx.doi.org/10.2307/3001478CrossrefGoogle Scholar

  • [17] Fiskesjö G. 1997. Allium test for screening chemicals; evaluation of cytological parameters, pp. 308–333. In: Wang W., Gorsuch J.W. & Hughes J.S. (eds) Plant for Environmental Studies. Lewis Publishers, New York. Google Scholar

  • [18] Flores H.E. 1991. Changes in polyamine metabolism in response to abiotic stress, pp. 213–228. In: Slocum R.M. & Flores H.E. (eds) Biochemistry and Physiology of Polyamines in Plants. CRC Press, Boca Raton. Google Scholar

  • [19] Galston A.W. & Kaur-Sawhney R. 1995. Polyamines as endogenous growth regulators, pp. 158–178. In: Davies P.J. (ed.), Plant Hormones: Physiology, Biochemistry and Molecular Biology. Kluwer Academics, Dordrecht. CrossrefGoogle Scholar

  • [20] Gatta L., Marhitelli C. & Federico R. 1992. Effect of polyamines and their oxidative product on maize and lentil root growth. Ann. Bot. 50: 43–48. Google Scholar

  • [21] Gill K.S. & Singh O.S. 1985. Effect of salinity on carbohydrate metabolism during paddy (Oryza sativa L.) seed germination under salt stress condition. J. Exp. Biol. 23: 384–386. Google Scholar

  • [22] Gömürgen A.N., Mutlu F. & Bozcuk S. 2005. Effects of polyamines (putrescine, spermidine and spermine) on root tip mitosis and chromosomes in Allium cepa L. Cytologia 70: 217–224. http://dx.doi.org/10.1508/cytologia.70.217CrossrefGoogle Scholar

  • [23] Hu Y., Bao F. & Li J. 2000. Promotive effect of brassinosteroids on cell division involves a distinct cycD3-induction pathway in Arabidopsis. Plant J. 24: 693–701. http://dx.doi.org/10.1046/j.1365-313x.2000.00915.xCrossrefGoogle Scholar

  • [24] Iqbal M. & Ashraf M. 2005. Changes in growth, photosynthetic capacity and ionic relations in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. Plant Growth Regul. 46: 19–30. http://dx.doi.org/10.1007/s10725-005-5901-8CrossrefGoogle Scholar

  • [25] İsmailoğlu I., Ünal M. & Palavan-Ünsal N. 2004. Effects of spermidine, spermine and cyclohexylamine on mitotic activity of 2X, 4X and 6X wheats. J. Cell Mol. Biol. 3: 83–88. Google Scholar

  • [26] Jiang W. & Liu D. 2000. Effects of Pb2+ on root growth, cell division, and nucleolus of Zea mays L. Bull. Environ. Contamin. Toxicol. 65: 786–793. http://dx.doi.org/10.1007/s001280000191CrossrefGoogle Scholar

  • [27] Kabar K. 1987. Alleviation of salinity stress by plant growth regulators on seed germination. J. Plant Physiol. 128: 179–183. CrossrefGoogle Scholar

  • [28] Kakkar R.K., Nagar P.K., Ahuja P.S. & Rai V.K. 2000. Polyamine and plant morphogenesis. Biol. Plant. 43: 1–11. http://dx.doi.org/10.1023/A:1026582308902CrossrefGoogle Scholar

  • [29] Katsuhara M. & Kawasaki T. 1996. Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant Cell Physiol. 37: 169–173. CrossrefGoogle Scholar

  • [30] Klasterska I., Natarajan A.T. & Ramel C. 1976. An interpretation of the origin of subchromatid aberrations and chromosome stickiness as a category of chromatid aberrations. Hereditas 83: 153–162. http://dx.doi.org/10.1111/j.1601-5223.1976.tb01581.xCrossrefGoogle Scholar

  • [31] Lutsenko E.K., Marushko E.A., Kononenko N.V. & Leonova T.G. 2005. Effects of fusicoccin on the early stages of Sorghum growth at high NaCl concentrations. Russ. J. Plant Physiol. 52: 332–337. http://dx.doi.org/10.1007/s11183-005-0050-5CrossrefGoogle Scholar

  • [32] Mirza J.I. & Bagni N. 1991. Effects of exogenous polyamines and difluoromethylornithine on seed germination and root growth of Arabidopsis thaliana. Plant Growth Regul. 10: 163–168. http://dx.doi.org/10.1007/BF00024962CrossrefGoogle Scholar

  • [33] Palavan-Ünsal N. 1995. Stress and polyamine metabolism. Bulg. J. Plant Physiol. 21: 3–14. Google Scholar

  • [34] Patil B.C. & Bhat G.I. 1992. A comparative study of MH and EMS in the induction of chromosomal aberrations on lateral root meristem in Clitoria ternetea L. Cytologia 57: 259–264. CrossrefGoogle Scholar

  • [35] Prakash L. & Prathapasenan G. 1988. Effect of NaCl salinity and putrescine on shoot growth, tissue ion concentration and yield of rice. J. Argon. Crop Sci. 160: 325–334. http://dx.doi.org/10.1111/j.1439-037X.1988.tb00630.xCrossrefGoogle Scholar

  • [36] Radić S., Prolić M., Pavlica M. & Pevalek-Kozlina B. 2005. Cytogenetic effects of osmotic stress on the root meristem cells of Centaurea ragusina L. Environ. Exp. Bot. 54: 213–218. http://dx.doi.org/10.1016/j.envexpbot.2004.07.007CrossrefGoogle Scholar

  • [37] Reggiani R., Bozo S. & Bertani A. 1994. Changes in polyamine metabolism in seedlings of three wheat (Triticum aestivum L.) cultivars differing in salt sensitivity. Plant Sci. 102: 121–126. http://dx.doi.org/10.1016/0168-9452(94)90028-0CrossrefGoogle Scholar

  • [38] Rost S., Frank C. & Beck E. 1996. The chloroplast envelope is permeable for maltose but not for maltodextrins. Biochim. Biophys. Acta 1291: 221–227. Google Scholar

  • [39] Schmidhalter U. & Oertli J.J. 1991. Germination and seedling growth of carrots under salinity and moisture stress. Plant Soil 132: 243–251. Google Scholar

  • [40] Sood S. & Nagar P.K. 2005. Xylem and phloem derived polyamines during flowering in two diverse rose species. J. Plant Growth Regul. 24: 36–40. http://dx.doi.org/10.1007/s00344-004-0026-2CrossrefGoogle Scholar

  • [41] Tabur S. & Demir K. 2009. Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity. Plant Growth Regul. 58: 119–123. http://dx.doi.org/10.1007/s10725-008-9357-5CrossrefGoogle Scholar

  • [42] Tabur S. & Demir K. 2010. Role of some growth regulators on cytogenetic activity of barley under salt stress. Plant Growth Regul. 60: 99–104. http://dx.doi.org/10.1007/s10725-009-9424-6CrossrefGoogle Scholar

  • [43] Tajbakhsh M., Zhou M.X., Chen Z.H. & Mendham N.J. 2006. Physiological and cytological response of salt-tolerant and non-tolerant barley to salinity during germination and early growth. Aust. J. Exp. Agric. 46: 555–562. http://dx.doi.org/10.1071/EA05026CrossrefGoogle Scholar

  • [44] Tal M. 1977. Physiology of polyploid plants: DNA, RNA, protein and abscisic acid in autotetraploid and diploid tomato under low and high salinity. Botanical Gazette 138: 119–122. http://dx.doi.org/10.1086/336905CrossrefGoogle Scholar

  • [45] Tobe K., Zhang L. & Omasa K. 2003. Alleviatory effects of calcium on the toxicity of sodium, potassium and magnesium chlorides to seed germination in three nonhalophytes. Seed Sci. Res. 13: 47–54. http://dx.doi.org/10.1079/SSR2002123CrossrefGoogle Scholar

  • [46] Ünal M., Palavan-Ünsal N. & Tüfekçi M.A. 2002. Role of putrescine and its biosynthetic inhibitor on seed germination root elongation and mitosis in Hordeum vulgare L. Bull. Pure Appl. Sci., Sec. B — Botany 21: 33–38. Google Scholar

  • [47] Ünal M., Palavan-Ünsal N. & Tüfekçi M.A. 2008. Effects of polyamines and polyamine biosynthetic inhibitors on mitotic activity of Allium cepa root tips. Acta Biol. Hung. 59: 93–102. http://dx.doi.org/10.1556/ABiol.59.2008.1.8CrossrefGoogle Scholar

  • [48] Werner T., Motyka V., Strnad M. & Schmulling T. 2001. Regulation of plant growth by cytokinins. Proc. Natl. Acad. Sci. USA 98: 10487–10492. http://dx.doi.org/10.1073/pnas.171304098CrossrefGoogle Scholar

  • [49] Yao Q., Wang L.R., Xing Q.X., Chen J.Z. & Zhu H.H. 2010. Exogenous polyamines influence root morphogenesis and arbuscular mycorrhizal development of Citrus limonia seedlings. Plant Growth Regul. 60: 27–33. http://dx.doi.org/10.1007/s10725-009-9415-7CrossrefGoogle Scholar

  • [50] Zielińska M., Kęşy J. & Kopcewicz J. 2006. Participation of polyamines in the flowering of the short-day plant Pharbitis nil. Plant Growth Regul. 50: 149–158. http://dx.doi.org/10.1007/s10725-006-9111-9CrossrefGoogle Scholar

  • [51] Zhu J.K. 2001. Plant salt tolerance. Trends Plant Sci. 6: 66–71. http://dx.doi.org/10.1016/S1360-1385(00)01838-0CrossrefGoogle Scholar

About the article

Published Online: 2010-10-15

Published in Print: 2010-12-01


Citation Information: Biologia, Volume 65, Issue 6, Pages 947–953, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0118-3.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Dilek Çavuşoğlu, Selma Tabur, and Kürşat Çavuşoğlu
CYTOLOGIA, 2017, Volume 82, Number 2, Page 115
[2]
Dilek Çavuşoğlu, Selma Tabur, and Kürşat Çavuşoğlu
CYTOLOGIA, 2016, Volume 81, Number 2, Page 207
[3]
[4]
Megan C. Shelden, Daniel A. Dias, Nirupama S. Jayasinghe, Antony Bacic, and Ute Roessner
Journal of Experimental Botany, 2016, Volume 67, Number 12, Page 3731

Comments (0)

Please log in or register to comment.
Log in