Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year


IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 65, Issue 6 (Dec 2010)

Issues

Species co-occurrences based on a presence/absence null model for Copepoda and cladocerans in Patagonia and Tierra del Fuego lakes and ponds

Patricio Ríos
  • Laboratorio de Limnología y Recursos Hídricos, Escuela de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrés Mancilla / Marcela Vega
  • Laboratorio de Limnología y Recursos Hídricos, Escuela de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-10-15 | DOI: https://doi.org/10.2478/s11756-010-0123-6

Abstract

The zooplankton assemblages in southern Chilean Patagonia are characterized by calanoid dominance and low species number that is observable under oligotrophic status and wide conductivity values, whereas at mesotrophic status the daphnids are dominant with high species number, and finally at hyper-saline environments halophilic species such as Artemia persimilis and/or the calanoid Boeckella poopensis predominate. In the present study data of different lakes and ponds between 45-53° S were analyzed, with the aim to determine potential structures at different sites. For this purpose a null model based in guild structure was applied, considering each guild a different kind of water body (lake, small lake, permanent pond, ephemeral pond, and saline lake). The results revealed in two simulations that guild are structured. These results are similar with other descriptions on the basis of null models that revealed a random pattern of species associations for similar ecosystems due to many species repeated in all or practically all studied sites or similarities of ecological features. Ecological and biogeographical topics were discussed.

Keywords: Calanoid; Daphnia; Artemia; lakes; ponds; null model

  • [1] Abelha M.C.F, Goulart E., Kashiwaqui E.A.L. & Da Silva M.R. 2006. Astyanax paranae Eigenmann, 1914 (Characiformes: Characidae) in the Alagados Reservior, Parana, Brazil: diet composition and variation. Neotrop. Ichthyol. 4: 345–356. http://dx.doi.org/10.1590/S1679-62252006000300006CrossrefGoogle Scholar

  • [2] Araya J.M. & Zúñiga L.R. 1985. Manual taxonómico del zooplancton lacustre de Chile. Boletín Limnológico, Universidad Austral de Chile 8, 169 pp. Google Scholar

  • [3] Bayly I.A.E. 1992a. Fusion of the genera Boeckella and Pseudoboeckella and a revision of their species from South America and Subantarctic islands. Rev. Chil. Hist. Nat. 65: 17–63 Google Scholar

  • [4] Bayly I.A.E. 1992b. The non marine Centropagidae (Copepoda, Calanoida) of the world. Guides for the Identification of Microinvertebrates of Freshwaters of the Continental Waters of the World 2, SPB Academic Publishers, Amsterdam, i–iv, 1–30. Google Scholar

  • [5] Brték D. & Mura G. 2000. Revised key to families and genera of the anostraca with notes on their geographical distribution. Crustaceana 79: 1037–1088. http://dx.doi.org/10.1163/156854000505083CrossrefGoogle Scholar

  • [6] Campos H., Soto D., Parra O., Steffen W. & Agüero G. 1996. Limnological studies of Amarga lagoon, Chile: a saline lake in Patagonia, South America. Int. J. Salt Lake Res. 4: 301–314. http://dx.doi.org/10.1007/BF01999114CrossrefGoogle Scholar

  • [7] Campos H., Soto D., Stefen W., Agüero G., Parra O. & Zúñiga L. 1994a. Limnological studies of lake del Toro (Chile): morphometry, physics, chemistry and plankton. Arch. Hydrobiol. 99(Suppl.): 199–215. Google Scholar

  • [8] Campos H., Soto D., Stefen W., Agüero G., Parra O., Žúñiga L. 1994b. Limnological studies of lake del Sarmiento (Chile): a subsaline lake from Chilean Patagonia. Arch. Hydrobiol. 99(Suppl.): 217–234. Google Scholar

  • [9] Cañete J. 1999. Determinación de la capacidad de carga del lago Sofía, XII región. Informe Técnico, Fondo de Investigación Pesquera, Chile. FIP-IT/99-26. Google Scholar

  • [10] Costa de Azevedo M.C., Araujo F.G., Machado A.L. & de Araujo Silva M. 2006. Co-occurrence of demersal fishes in a tropical bay in southeastern Brazil: A null model analysis. Est. Coast. Shelf Sci. 66: 315–322. http://dx.doi.org/10.1016/j.ecss.2005.09.006CrossrefGoogle Scholar

  • [11] Dartnall J.G. 2005. Freshwater invertebrates of subantarctic South Georgia. J. Nat. Hist. 39: 3321–3342. http://dx.doi.org/10.1080/00222930500190186CrossrefGoogle Scholar

  • [12] De los Ríos P. 2005. Richness and distribution of crustacean zooplankton species in Chilean Andes mountains and southern Patagonia shallow ponds. Pol. J. Env. Stud. 14: 817–822. Google Scholar

  • [13] De los Ríos P. 2008. A null model for explain crustacean zooplankton species associations in central and southern Patagonian inland waters. An. Inst. Patagonia 36: 25–33. Google Scholar

  • [14] De los Ríos P. & Contreras P. 2005. Salinity level for occurrence of calanoids copepods in shallow ponds of South American Altiplano and Chilean Patagonia. Pol. J. Ecol. 53: 445–450. Google Scholar

  • [15] De los Ríos P. & Crespo J. 2004. Salinity effects on the abundance of Boeckella poopoensis (Copepoda, Calanoida) in saline ponds of the Atacama desert, northern Chile. Crustaceana 77: 417–423. http://dx.doi.org/10.1163/1568540041643328CrossrefGoogle Scholar

  • [16] De los Ríos P. & Soto D. 2007. Crustacean (Copepoda and Cladocera) zooplankton richness in Chilean Patagonian lakes. Crustaceana 80: 285–296. http://dx.doi.org/10.1163/156854007780162433CrossrefGoogle Scholar

  • [17] De los Ríos P. & Soto D. 2009. Estudios limnológicos en lagos y lagunas del Parque Nacional Torres del Paine (51° S, Chile). An. Inst. Pat. 37: 63–71. Google Scholar

  • [18] De los Ríos P. & Zúñiga O. 2000. Comparación biométrica del lóbulo frontal en poblaciones americanas de Artemia (Anostraca: Artemiidae). Rev. Chil. Hist. Nat. 73: 31–38. Google Scholar

  • [19] De los Ríos P., Acevedo P., Rivera R. & Roa G. 2008a. Comunidades de crustáceos litorales de humedales del norte de la Patagonia chilena (38° S): rol potencial de la exposición a la radiación ultravioleta, pp. 209–229. In: Volpedo A. & Fernandez L. (eds), Efecto de los cambios globales en la diversidad, Programa CYTED 406RT0285. Google Scholar

  • [20] De los Ríos P., Rivera N. & Galindo M. 2008b. The use of null models to explain zooplancton species associations in shallow water bodies of the Magallanes region, Chile. Crustaceana 81: 1219–1228. http://dx.doi.org/10.1163/156854008X374540CrossrefGoogle Scholar

  • [21] De los Ríos P., Rogers D. C. & Rivera N. 2008c. Branchinecta gaini (Daday, 1910) (Branchiopoda, Anostraca) as a bioindicator of oligotrophic and low conductivity shallow ponds in southern Chilean Patagonia. Crustaceana 81: 1025–1034. http://dx.doi.org/10.1163/156854008X360789CrossrefGoogle Scholar

  • [22] Dodson S.I. 1992. Predicting crustacean species richness of crustacean zooplankton species richness. Limnol. Oceanogr. 37: 848–856. http://dx.doi.org/10.4319/lo.1992.37.4.0848CrossrefGoogle Scholar

  • [23] Franca F.G.R. & Araújo A.F.B. 2007. Are there co-occurrence patterns that structure snake communities in Central Brazil? Braz. J. Biol. 67: 33–40. http://dx.doi.org/10.1590/S1519-69842007000100005CrossrefGoogle Scholar

  • [24] Frutos S.M. 1998. Densidad y diversidad del zooplancton en los ríos Salado y Negro, planicie del río Paraná- Argentina. Rev. Bras. Biol. 58: 431–444. CrossrefGoogle Scholar

  • [25] Gillooly J.F. & Dodson S.I. 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world freshwater cladocerans. Limnol. Oceanogr. 45: 22–30. http://dx.doi.org/10.4319/lo.2000.45.1.0022CrossrefGoogle Scholar

  • [26] Gotelli N.J. 2000. Null models of species co-occurrence patterns. Ecology 81: 2606–2621. http://dx.doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2CrossrefGoogle Scholar

  • [27] Gotelli N.J. 2001. Research frontiers in null model analysis. Global Ecology Biogeography 10: 337–343. http://dx.doi.org/10.1046/j.1466-822X.2001.00249.xCrossrefGoogle Scholar

  • [28] Gotelli N.J. & Entsminger G.L. 2009. EcoSim: Null models software for ecology. Version 7. Acquired Intelligence Inc. & Kesey-Bear. Jericho, VT 05465. http://garyentsminger.com/ecosim.htm (accessed 1.05.2009) Google Scholar

  • [29] Gotelli N.J. & Graves G.R. 1996. Null Models in Ecology. Smithsonian Institution Press, Washington, DC., 357 pp. Google Scholar

  • [30] Hannsson L.A., Dartnall H.J., Ellis-Evans J.C., MacAlister H. & Tranvik L.J. 1996. Variations in physical, chemical and biological components in the subantarctic lakes of South Georgia. Ecography 19: 393–404. DOI: 10.1111/j.1600-0587.1996.tb0004.x http://dx.doi.org/10.1111/j.1600-0587.1996.tb00250.xCrossrefGoogle Scholar

  • [31] Hurlbert S.H., Loayza W. & Moreno T. 1986. Fish flamingo plankton interactions in the Peruvian Andes. Limnol. Oceanogr. 31: 457–468. http://dx.doi.org/10.4319/lo.1986.31.3.0457CrossrefGoogle Scholar

  • [32] Hurlbert S.H., López M. & Keith J. 1984. Wilson’s phalarope in the Central Andes and its interaction with the Chilean Flamingo. Rev. Chil. Hist. Nat. 57: 47–57. Google Scholar

  • [33] Jeppensen E., Lauridsen T.L., Mitchell S.F. & Burns C.W. 1997. Do planktivorous fish structure the zooplankton communities in New Zealand lakes? N. Z. J. Mar. Freshwater Res. 31: 163–173. http://dx.doi.org/10.1080/00288330.1997.9516755CrossrefGoogle Scholar

  • [34] Jeppensen E., Lauridsen T.L., Mitchell S.F., Christoffersen K. & Burns C.W. 2000. Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. J. Plankt. Res. 22: 951–968. http://dx.doi.org/10.1093/plankt/22.5.951CrossrefGoogle Scholar

  • [35] Luiselli L. 2007. Community ecology of African reptiles: historical perspective and a meta-analysis using null model. Afr. J. Ecol. 46: 384–394. http://dx.doi.org/10.1111/j.1365-2028.2007.00870.xCrossrefGoogle Scholar

  • [36] Luiselli L. 2008a. Do lizard communities partition the trophic niche? A world wide meta-analysis using null models. Oikos 117: 321–330. DOI: 10.1111/j.2007.0030-1299.16297.x http://dx.doi.org/10.1111/j.2007.0030-1299.16297.xCrossrefGoogle Scholar

  • [37] Luiselli L. 2008b. Resource partitioning in freshwater turtle communities: a null model meta-analysis of available data. Acta Oecol. 34: 80–88. DOI: 10.1016/j.actao.2008.04.001 http://dx.doi.org/10.1016/j.actao.2008.04.001CrossrefGoogle Scholar

  • [38] Luiselli L., Eniang E.A. & Akani G.C. 2007. Non-random structure of a guild of geckos in a fragmented, human altered, African rain forest. Ecol. Res. 22: 593–603. http://dx.doi.org/10.1007/s11284-006-0061-5CrossrefGoogle Scholar

  • [39] Menu-Marque S., Morrone J.J. & Locascio de Mitrovich C. 2000. Distributional patterns of South American species of Boeckella (Copepoda, Centropagidae): a track analysis. J. Crust. Biol. 20: 262–272. http://dx.doi.org/10.1651/0278-0372(2000)020[0262:DPOTSA]2.0.CO;2CrossrefGoogle Scholar

  • [40] Modenutti B.E., Balseiro E.G., Queimaliños C.P., Suarez D.A., Dieguez M.C. & Albariño R.J. 1998. Structure and dynamics of food webs in Andean lakes. Lak. Reserv. Res. Manag. 3: 179–186. http://dx.doi.org/10.1046/j.1440-1770.1998.00071.xCrossrefGoogle Scholar

  • [41] Niemeyer H. & Cereceda P. 1984. Hidrografěa. Geografía de Chile, Vol.VIII. Chilean Military Geographic Institute, Santiago de Chile, 320 pp. Google Scholar

  • [42] Paggi J.C. 1999. Status and phylogenetic relationships of Daphnia sarsi Daday 1902 (Crustacea, Anomopoda). Hydrobiologia 403: 27–37. http://dx.doi.org/10.1023/A:1003712715676CrossrefGoogle Scholar

  • [43] Pugh P.J.A., Dartnall H. & Mcinnes S.J. 2002. The non-marine Crustacea of Antarctica and the islands of the Southern Ocean: biodiversity and biogeography. J. Nat. Hist. 36: 1047–1103. http://dx.doi.org/10.1080/00222930110039602CrossrefGoogle Scholar

  • [44] Reid J. 1985. Chave de identificao e lista de referencias bibliográficas para as especies continentais sudamericanas de vida libre da orden Cyclopoida (Crustacea, Copepoda). Bol. Zool. Univ. Sao Paulo. 9: 17–143. Google Scholar

  • [45] Ribas C.R. & Schoereder J.H. 2002. Are all ants mosaics caused by competition? Oecologia 131: 606–611. DOI: 10.1007/s00442-002-0912-x http://dx.doi.org/10.1007/s00442-002-0912-xCrossrefGoogle Scholar

  • [46] Rodríguez-Fernandez J.I., Barros de Carvalho C.J. & Moura M.O. 2006. Estrutura de asembleias de Muscidae (Diptera) no Paraná: uma análise por modelos nulos. Rev. Bras. Entomol. 50: 93–100. http://dx.doi.org/10.1590/S0085-56262006000100014CrossrefGoogle Scholar

  • [47] Rogers D.C., De los Ríos P. & Zúñiga O. 2008. Fairy shrimp (Crustacea, Branchiopoda, Anostraca) of Chile. J. Crust. Biol. 28: 551–563. http://dx.doi.org/10.1651/07-2953.1CrossrefGoogle Scholar

  • [48] Sanders N.J., Crutsinger G.M., Majer R.R. & Delabie J.H.C. 2007. An ant mosaic revisited: dominant ant species dissemble arboreal ant communities but co-occur randomly. Biotropica 39: 422–427. http://dx.doi.org/10.1111/j.1744-7429.2007.00263.xCrossrefGoogle Scholar

  • [49] Segurado P. & Fiqueiredo D. 2007. Coexistence of two freshwater turtle species along a Mediterranean stream: the role of spatial and temporal heterogeneity. Acta Oecol. 32: 134–144. DOI: 10.1016/j.actao.2007.03.015 http://dx.doi.org/10.1016/j.actao.2007.03.015CrossrefGoogle Scholar

  • [50] Soto D. 1990. Biomasa zooplanctónica de lagunas Patagónicas y su relación con el flamenco Chileno (Phoenicopterus chilensis), pp. 84–102. In: Actas Primer Taller Internacional de Especialistas en Flamencos Sudamericanos, San Pedro de Atacama, Chile. Google Scholar

  • [51] Soto D., Campos H., Steffen W., Parra O. & Zúñiga L. 1994. The Torres del Paine lake district (Chilean Patagonia): a case of potentially N-limited lakes and ponds. Arch. Hydrobiol. 99: 181–197. Google Scholar

  • [52] Soto D. & De los Ríos P. 2006. Trophic status and conductitivity as regulators of daphnids dominance and zooplankton assemblages in lakes and ponds of Torres del Paine National Park. Biologia 61: 541–546. http://dx.doi.org/10.2478/s11756-006-0088-7CrossrefGoogle Scholar

  • [53] Soto D. & Zúñiga L. 1991. Zooplankton assemblages of Chilean temperate lakes: a comparison with North American counterparts. Rev. Chil. Hist. Nat. 64: 569–546. Google Scholar

  • [54] Tiho S. & Johens J. 2007. Co-occurrence of earthworms in urban surroundings: a null models of community structure. Eur. J. Soil Biol. 43: 84–90. DOI: 10.1016/j.ejsobi.2006.10.004 http://dx.doi.org/10.1016/j.ejsobi.2006.10.004CrossrefGoogle Scholar

  • [55] Tondoh J.E. 2006. Seasonal changes in earthworm diversity and community structure in central Côte d’Ivoire. Eur. J. Soil Biol. 42(Suppl. 1): S334–S340. DOI: 10.1016/j.ejsobi.2006.09.003 http://dx.doi.org/10.1016/j.ejsobi.2006.09.003CrossrefGoogle Scholar

  • [56] Villalobos L. 1999. Determinación de capacidad de carga y balance de fósforo y nitrógeno de los lagos Riesco, Los Palos y Laguna Escondida en la XI región. Informe Técnico, Fondo de Investigación Pesquera, Chile FIP-IT/97-39. Google Scholar

  • [57] Ulrich W. 2004. Species co-occurrences and neutral models: reassessing J.M. Diamond’s assembly rules. Oikos 107: 603–609. DOI: 10.1111/j.0030-1299.2004.12981.x http://dx.doi.org/10.1111/j.0030-1299.2004.12981.xCrossrefGoogle Scholar

  • [58] Williams W.D., Carrick T.R., Bayly I.A.E., Green J. & Herbst D.B. 1995. Invertebrates of salt lakes of the Bolivian Altiplano. Int. J. Salt Lake Res. 4: 65–77. http://dx.doi.org/10.1007/BF01992415CrossrefGoogle Scholar

About the article

Published Online: 2010-10-15

Published in Print: 2010-12-01


Citation Information: Biologia, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0123-6.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in