Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 65, Issue 6


What colour of flowers do Lepidoptera prefer for foraging?

Selcuk Yurtsever / Zuhal Okyar / Necmettin Guler
Published Online: 2010-10-15 | DOI: https://doi.org/10.2478/s11756-010-0125-4


Food plant preferences of some Lepidoptera species associated with particular colour of the flowers were investigated. Based on 1,329 field observations of 43 Lepidoptera and 66 plant species, Lepidoptera showed a high tendency (G-test, G adj = 698.6, df = 6, P < 0.001) to use the yellow (29%) and pink (28%) coloured flowers for foraging. Compared to the other colours it was evident that plants with red flowers (2%) were not preferred. Moreover, the plants with red (H = 0.435) and yellow-white (H = 0.543) flowers were not visited by diverse Lepidoptera species. Although yellow and pink flowers were most frequently visited, the highest degrees of the Lepidoptera diversity values were associated with the plants having blue (H = 0.647) and purple (H = 0.634) flowers. Species of Nymphalidae were most numerous (14 spp.) in the study area and the members of this family were observed 430 times on 39 different plant species, but never on plants with red flowers. Pieris rapae was the most abundant species that occurred 136 times on a total of 21 different plant species of which eight had yellow flowers. But, this species has never been seen while feeding on red flowers.

Keywords: Lepidoptera; diversity; flower colour; foraging behaviour

  • [1] Arikawa K. & Stavenga D.G. 1997. Random array of colour filters in the eyes of butterflies. J. Exp. Biol. 200: 2501–2506. Google Scholar

  • [2] Arroyo M.T.T., Till-Bottraud I., Torres C., Henriquez C.A. & Martinez J. 2007. Display size preferences and foraging habits of high Andean butterflies pollinating Chaetanthera lycopodioides (Asteraceae) in the subnival of the central Chilean Andes. Arct. Antarct. Alp. Res. 39: 347–352. http://dx.doi.org/10.1657/1523-0430(06-017)[ARROYO]2.0.CO;2Web of ScienceCrossrefGoogle Scholar

  • [3] Awata H., Wakakuwa M. & Arikawa K. 2009. Evolution of colour vision in pierid butterflies: blue opsin duplication, ommatidial heterogeneity and eye regionalization in Colias erate. J. Comp. Physiol. A 195: 401–408. DOI: 10.1007/s00359-009-0418-7 http://dx.doi.org/10.1007/s00359-009-0418-7Web of ScienceCrossrefGoogle Scholar

  • [4] Balkenius, A. & Kelber A. 2004. Colour constancy in diurnal and nocturnal hawkmoths. J. Exp. Biol. 207: 3307–3316. DOI: 10.1242/jeb.01158 http://dx.doi.org/10.1242/jeb.01158CrossrefGoogle Scholar

  • [5] Bandai K., Arikawa K. & Eguchi E. 1992. Localization of spectral receptors in the ommatidium of butterfly compound eye determined by polarization sensitivity. J. Comp. Physiol. 171: 289–297. http://dx.doi.org/10.1007/BF00223959CrossrefGoogle Scholar

  • [6] Bernard G.D. & Remington C.L. 1991. Color vision in Lycaena butterflies: Spectral tuning of receptor arrays in relation to behavioural ecology. Proc. Nat. Acad. Sci. U.S.A. 88: 2783–2787. http://dx.doi.org/10.1073/pnas.88.7.2783CrossrefGoogle Scholar

  • [7] Briscoe A.D. & Bernard G.D. 2005. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species. J. Exp. Biol. 208: 687–696. DOI: 10.1242/jeb.01453 http://dx.doi.org/10.1242/jeb.01453CrossrefGoogle Scholar

  • [8] Briscoe A.D. & Chittka L. 2001. The evolution of colour vision in insects. Annu. Rev. Entomol. 46: 471–510. http://dx.doi.org/10.1146/annurev.ento.46.1.471CrossrefGoogle Scholar

  • [9] Casper B.B. & La Pine T.R. 1984. Changes in corolla color and other floral characteristics in Cryptantha humilis (Boraginaceae) cues to discourage pollinators? Evolution 38: 128–141. http://dx.doi.org/10.2307/2408552CrossrefGoogle Scholar

  • [10] Collin C.L., Pennings P.S., Rueffler C., Widmer A. & Shykoff J.A. 2002. Natural enemies and sex: how seed predation and pathogens contribute to sex-differentiated reproductive success in a gynodioecious plant. Oecologia 131: 94–102. DOI: 10.1007/s00442-001-0854-8 http://dx.doi.org/10.1007/s00442-001-0854-8CrossrefGoogle Scholar

  • [11] Corbet S.A. 2000. Butterfly nectaring flowers: butterfly and flower form. Entomol. Exp. Appl. 96: 289–298. DOI: 10.1023/A:1004096432758 http://dx.doi.org/10.1023/A:1004096432758CrossrefGoogle Scholar

  • [12] Corbet S.A. 2003. Nectar sugar content: estimating standing crop and secretion rate in the field. Apidologie 34: 1–10. DOI:10.1051/apido:2002049 http://dx.doi.org/10.1051/apido:2002049CrossrefGoogle Scholar

  • [13] David W.A.L. & Gardiner O.C. 1961. Feeding behaviour of adults of Pieris brassicae (L.) in a laboratory culture. Bull. Entomol. Res. 52: 741–762. http://dx.doi.org/10.1017/S0007485300055747CrossrefGoogle Scholar

  • [14] Fowler J., Kohen L. & Jarwis P. 1998. Practical Statistics for Field Biology. Wiley, Chichester, 257 pp. Google Scholar

  • [15] Galen C. 1999. Why do flowers vary: the functional ecology of variation in flower size and form within natural plant populations. Bioscience 49: 631–640. http://dx.doi.org/10.2307/1313439CrossrefGoogle Scholar

  • [16] Gardener M.C. & Gillman M.P. 2002. The taste of nectar — a neglected area of pollination ecology. Oikos 98: 552–557. DOI: 10.1034/j.1600-0706.2002.980322.x http://dx.doi.org/10.1034/j.1600-0706.2002.980322.xCrossrefGoogle Scholar

  • [17] Goulson D. 1999. Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspect. Plant Ecol. Evol. Syst. 2: 185–209. http://dx.doi.org/10.1078/1433-8319-00070CrossrefGoogle Scholar

  • [18] Goulson D. 2000. Are insects flower constant because they use search images to find flowers. Oikos 88: 547–552. DOI: 10.1034/j.1600-0706.2000.880311.x http://dx.doi.org/10.1034/j.1600-0706.2000.880311.xCrossrefGoogle Scholar

  • [19] Goulson D. & Cory J.S. 1993. Flower constancy and learning in foraging preferences of the green-veined white butterfly Pieris napi. Ecol. Entomol. 18: 315–320. http://dx.doi.org/10.1111/j.1365-2311.1993.tb01107.xCrossrefGoogle Scholar

  • [20] Goulson D. & Wright N.P. 1998. Flower constancy in the hover-flies Episyrphus balteatus (Degeer) and Syrphus ribesii (L.) (Syrphidae). Behav. Evol. 9: 213–219. Google Scholar

  • [21] Goyret J., Pfaff M., Raguso R.A. & Kelber A. 2008. Why do Manduca sexta feed from white flowers? Innate and learnt colour preferences in a hawkmoth. Naturwissenchaften 95: 569–576. http://dx.doi.org/10.1007/s00114-008-0350-7CrossrefGoogle Scholar

  • [22] Hasselmann E.-M. 1962. Über de relative spektrale Empfindichkeit von Käfer- und Schemetterlingsaugen bei verschiedenen Helligkeiten. Zool. Jb. Physiol. 69: 537–576. Google Scholar

  • [23] Hutcheson K. 1970. A test for comparing diversities based on the Shannon formula. J. Theor. Biol. 29: 151–154. http://dx.doi.org/10.1016/0022-5193(70)90124-4CrossrefGoogle Scholar

  • [24] Ida T.Y. & Kudo G. 2003. Floral colour change in Weigela middendorffiana (Caprifoliaceae): Reduction of geitonogamous pollination by bumble bees. Am. J. Botany 90: 1751–1757. http://dx.doi.org/10.3732/ajb.90.12.1751CrossrefGoogle Scholar

  • [25] Kay Q.O.N. 1976. Preferential pollination of yellow-flowered morphs of Raphanus raphanistrum by Pieris and Eristalis spp. Nature 261: 230–232. DOI: 10.1038/261230a0 http://dx.doi.org/10.1038/261230a0CrossrefGoogle Scholar

  • [26] Kelber A. 1997. Innate preferences for flower features in the hawkmoth Macroglossum stellatarum. J. Exp. Biol. 200: 827–836. Google Scholar

  • [27] Kelber A. 1999. Ovipositing butterflies use a red receptor to see green. J. Exp. Biol. 202: 2619–2630. Google Scholar

  • [28] Kelber A., Balkenius A. & Warrant E.J. 2002. Scotopic colour vision in nocturnal hawk moths. Nature 419: 922–925. DOI: 10.1038/nature01065 http://dx.doi.org/10.1038/nature01065CrossrefGoogle Scholar

  • [29] Kelber A. & Hénique U. 1999. Trichromatic colour vision in the hummingbird hawkmoth, Macroglossum stellatarum. J. Comp. Physiol. A 184: 535–541. DOI: 10.1007/s003590050353 http://dx.doi.org/10.1007/s003590050353CrossrefGoogle Scholar

  • [30] Kelber A. & Pfaff M 1999. True colour vision in the Orchard Butterfly, Papilio aegeus. Naturwissenchaften 86: 221–224. http://dx.doi.org/10.1007/s001140050601CrossrefGoogle Scholar

  • [31] Kevan P.G. & Baker H.G. 1983. Insects as flower visitors and pollinators. Annu. Rev. Entomol. 28: 407–453 http://dx.doi.org/10.1146/annurev.en.28.010183.002203CrossrefGoogle Scholar

  • [32] Kinoshita M. & Arikawa K. 2000. Colour constancy of the swallowtail butterfly Papilio xuthus. J.Exp. Biol. 203: 3521–3530. Google Scholar

  • [33] Kudoh H. & Whigham D.F. 1998. The effect of petal size manipulation on pollinator/seed-predator mediated female reproductive success of Hibiscus moscheutos. Oecologia 117: 70–79. http://dx.doi.org/10.1007/s004420050633CrossrefGoogle Scholar

  • [34] Lunau K. & Wacht S. 1994. Optical releasers of the innate proboscis extension in the hoverfly Eristalis tenax L. (Syrphidae, Diptera). J. Comp. Physiol. A 174: 575–579. http://dx.doi.org/10.1007/BF00217378CrossrefGoogle Scholar

  • [35] Niesenbaum R.A., Patselas M.G. & Wein S.D. 1999. Does flower colour change in Aster vimineus cue pollinators? Am. Midl. Nat. 141: 59–68. http://dx.doi.org/10.1674/0003-0031(1999)141[0059:DFCCIA]2.0.CO;2CrossrefGoogle Scholar

  • [36] Odell E., Raguso R.A. & Jones K.N. 1999. Bumblebee foraging responses to variation in floral scent and color in snapdragons (Antirrhinum: Scrophullariaceae). Am. Midl. Nat. 142: 257–265. http://dx.doi.org/10.1674/0003-0031(1999)142[0257:BFRTVI]2.0.CO;2CrossrefGoogle Scholar

  • [37] Osorio D. & Vorobyev M. 2008. A review of the evolution of animal colour vision and visual communication signals. Vision Res. 48: 2042–2051. http://dx.doi.org/10.1016/j.visres.2008.06.018Web of ScienceCrossrefGoogle Scholar

  • [38] Qiu X. & Arikawa K. 2003. The photoreceptor localization con-firms the spectral heterogeneity of ommatidia in the male small butterfly, Pieris rapae crucifora. J. Comp. Physiol A. 189: 81–88. Google Scholar

  • [39] Scherer C. & Kolb G. 1987. Behavioral experiments on the visual processing of color stimuli in Pieris brassicae L. (Lepidoptera). J. Comp. Physiol. 160: 645–656. http://dx.doi.org/10.1007/BF00611937CrossrefGoogle Scholar

  • [40] Sun S.-G., Liao K., Xia J. & Guo Y.H. 2005. Floral colour change in Pedicularis monbeigiana (Orobanchaceae). Plant Syst. Evol. 255: 77–85. http://dx.doi.org/10.1007/s00606-005-0348-yCrossrefGoogle Scholar

  • [41] Sutherland J.P., Sullivan M.S. & Poppy G.M. 1999. The influence of floral character on the foraging of the hoverfly, Episyrphus baltaeus. Entomol. Exp. Appl. 93: 157–164. http://dx.doi.org/10.1023/A:1003844307934CrossrefGoogle Scholar

  • [42] Theis N. 2006. Fragrance of Canada thistle (Circium arvanse) attracts both floral herbivores and pollinators. J. Chem. Ecol. 32: 917–927. DOI: 10.1007/s10886-006-9051-x http://dx.doi.org/10.1007/s10886-006-9051-xCrossrefGoogle Scholar

  • [43] Vaidya V.G. 1969. Investigations on the role of visual stimuli in the egg-laying and resting behaviour of Papilio demoleus L. (Papilionidae, Lepidoptera). Anim. Behav. 17: 350–355. http://dx.doi.org/10.1016/0003-3472(69)90021-9CrossrefGoogle Scholar

  • [44] Wakakuwa M., Stavenga D.G., Kurasawa M. & Arikawa K. 2004. A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. J. Exp. Biol. 207: 2803–2810. DOI: 10.1242/jeb.01078 http://dx.doi.org/10.1242/jeb.01078CrossrefGoogle Scholar

  • [45] Warrant E. & Nilsson D.-A. 2006. Invertebrate vision. Cambridge Univ. Press. 547 pp. Google Scholar

  • [46] Waser N.M. & Price M.V. 1981. Polinator choice and stabilizing selection for flower color in Delphinium nelsonii Evolution 35: 376–390. http://dx.doi.org/10.2307/2407846CrossrefGoogle Scholar

  • [47] Weiss M.R. 1991. Floral colour changes as cues for pollinators. Nature 354: 227–229. DOI: 10.1038/354227a0 http://dx.doi.org/10.1038/354227a0CrossrefGoogle Scholar

  • [48] Weiss M.R. 1997. Innate colour preferences and flexible colour learning in the pipevine swallowtail. Anim. Behav. 53: 1043–1052. http://dx.doi.org/10.1006/anbe.1996.0357CrossrefGoogle Scholar

  • [49] Weiss M.R. & Papa D.R. 2003. Colour learning in two behavioural contexts: how much can a butterfly keep in mind? Anim. Behav. 65: 425–434. http://dx.doi.org/10.1006/anbe.2003.2084CrossrefGoogle Scholar

  • [50] Zar H.J. 1996. Biostatistical Analysis. Prentice-Hall, Inc. New York, 662 pp. Google Scholar

About the article

Published Online: 2010-10-15

Published in Print: 2010-12-01

Citation Information: Biologia, Volume 65, Issue 6, Pages 1049–1056, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0125-4.

Export Citation

© 2010 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Feza Can Cengiz, Konstantin A. Efetov, Kamuran Kaya, Elena E. Kucherenko, Zühal Okyar, and Gerhard M. Tarmann
Nota Lepidopterologica, 2018, Volume 41, Number 1, Page 23
A. Markheiser, M. Rid, S. Biancu, J. Gross, and C. Hoffmann
Journal of Applied Entomology, 2017

Comments (0)

Please log in or register to comment.
Log in