Jump to ContentJump to Main Navigation
Show Summary Details
More options …


12 Issues per year

IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

See all formats and pricing
More options …
Volume 66, Issue 1


Comparison between tracheary element lignin formation and extracellular lignin-like substance formation during the culture of isolated Zinnia elegans mesophyll cells

Yasushi Sato / Youko Yajima / Naohito Tokunaga / Ross Whetten
Published Online: 2010-12-21 | DOI: https://doi.org/10.2478/s11756-010-0130-7


Lignin is synthesized not only during morphogenesis of vascular plants but also in response to various stresses. Isolated Zinnia elegans mesophyll cells can differentiate into tracheary elements (TEs), and deposit lignin into cell walls in TE-inductive medium (D medium). Meanwhile isolated mesophyll cells cultured in hormone-free medium (Co medium) accumulate stress lignin-like substance during culture. Therefore this culture system is suitable for study of lignin and lignin-like substance formation.

In D medium lignin was deposited in TEs, but in Co medium, extracellular lignin-like substance accumulated. Analysis of the culture media indicated the presence of dilignols in D culture, but not in Co culture. To investigate the fate of lignin precursors, we added coniferyl alcohol (CA) in each culture. In Co medium, CA was polymerized into dilignols rapidly but they were present only temporarily, and in D medium CA was polymerized into dilignols relatively slowly but their content increased continually.

Meanwhile, in Co culture, peroxidase activity in the medium was much higher than the peroxidase activity bound ionically to the cell walls. In D culture, ionically bound peroxidase activity was higher than that in the medium. These results may suggest that lignin deposition in TEs is related to ionically bound peroxidases in D culture, and lignin-like substance deposition in the medium is related to peroxidases in the medium in Co culture.

Keywords: Zinnia elegans; lignin and lignin-like substance; peroxidase; tracheary element

  • [1] Boerjan W., Ralph J. & Baucher M. 2003. Lignin synthesis. Annu. Rev. Plant Biol. 54: 519–546. http://dx.doi.org/10.1146/annurev.arplant.54.031902.134938CrossrefGoogle Scholar

  • [2] Bruce R.J. & West C.A. 1989. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol. 91: 889–897. http://dx.doi.org/10.1104/pp.91.3.889CrossrefGoogle Scholar

  • [3] Campbell M.M. & Ellis B.E. 1992. Fungal elicitor-mediated responses in pine cell cultures: III. Purification and characterization of phenylalanine ammonia-lyase. Plant Physiol. 98: 62–70. http://dx.doi.org/10.1104/pp.98.1.62CrossrefGoogle Scholar

  • [4] Chen C.-L. 1992. Nitrobenzene and cupric oxide oxidation, pp. 301–333. In: Lin S.Y. & Dence C.W. (eds), Methods in lignin chemistry. Springer-Verlag Berlin Heidelberg New York. Google Scholar

  • [5] de Obeso M., Caparros-Ruiz D., Vignols F., Puigdomenech P. & Rigau J. 2003. Characterisation of maize peroxidases having differential patterns of mRNA accumulation in relation to lignifying tissues. Gene 309: 23–33. http://dx.doi.org/10.1016/S0378-1119(03)00462-1CrossrefGoogle Scholar

  • [6] Fukuda H. 1997. Tracheary element differentiation. Plant Cell 9: 1147–1156. http://dx.doi.org/10.1105/tpc.9.7.1147CrossrefGoogle Scholar

  • [7] Fukuda H. & Komamine A. 1980. Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol. 65: 57–60. http://dx.doi.org/10.1104/pp.65.1.57CrossrefGoogle Scholar

  • [8] Fukuda H. & Komamine A. 1982. Lignin synthesis and its related enzymes as markers of tracheary-element differentiation in single cells isolated from the mesophyll of Zinnia elegans. Planta 155: 423–430. http://dx.doi.org/10.1007/BF00394471CrossrefGoogle Scholar

  • [9] Lewis N.G. & Yamamoto E. 1990. Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 455–496. http://dx.doi.org/10.1146/annurev.pp.41.060190.002323CrossrefGoogle Scholar

  • [10] Hilaire E., Young S.A., Willard L.H., McGee J.D., Sweat T., Chittoor J.M., Guikema J.A. & Leach J.E. 2001. Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening. Mol. Plant Microbe Interact. 14: 1411–1419. http://dx.doi.org/10.1094/MPMI.2001.14.12.1411CrossrefGoogle Scholar

  • [11] Hosokawa M., Suzuki S., Umezawa T. & Sato Y. 2001. Progress of lignification mediated by intercellular transportation of monolignols during tracheary element differentiation of isolated Zinnia mesophyll cells. Plant Cell Physiol. 42: 959–968. http://dx.doi.org/10.1093/pcp/pce124CrossrefGoogle Scholar

  • [12] Ito Y., Tokunaga N., Sato Y. & Fukuda H. 2004. Transfer of phenylpropanoids via the medium between xylem cells in Zinnia xylogenic culture. Plant Biotech. 21: 205–213. CrossrefGoogle Scholar

  • [13] Kärkönen A. & Koutaniemi S. 2010. Lignin biosynthesis studies in plant tissue cultures. J. Integr. Plant Biol. 52: 176–185 http://dx.doi.org/10.1111/j.1744-7909.2010.00913.xCrossrefGoogle Scholar

  • [14] Kubo M., Udagawa M., Nishikubo N., Horiguchi G., Yamaguchi M., Ito J., Mimura T., Fukuda H. & Demura T. 2005. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19: 1855–1860. http://dx.doi.org/10.1101/gad.1331305CrossrefGoogle Scholar

  • [15] Lange B.M., Lapierre C. & Sandermann H. Jr 1995. Elicitorinduced spruce stress lignin (structural similarity to early developmental lignins). Plant Physol. 108: 1277–1287. Google Scholar

  • [16] Moller R., McDonald A.G., Walter C. & Harris P.J. 2003. Cell differentiation, secondary cell-wall formation and transformation of callus tissue of Pinus radiata D. Don. Planta 217: 736–347. http://dx.doi.org/10.1007/s00425-003-1053-0CrossrefGoogle Scholar

  • [17] Motose H., Iwamoto K., Endo S., Demura T., Sakagami Y., Matsubayashi Y., Moore K.L. & Fukuda H. 2009. Involvement of phytosulfokine in the attenuation of stress response during the transdifferentiation of zinnia mesophyll cells into tracheary elements. Plant Physiol. 150: 437–447. http://dx.doi.org/10.1104/pp.109.135954Web of ScienceCrossrefGoogle Scholar

  • [18] Nose M., Bernards M.A., Furlan M., Zajicek J., Eberhardt T.L., Lewis N.G. 1995. Towards the specification of consecutive steps in macromolecular lignin assembly. Phytochemistry 39: 71–79. http://dx.doi.org/10.1016/0031-9422(95)95268-YCrossrefGoogle Scholar

  • [19] Pauwels L., Morreel K., De Witte E., Lammertyn F., Van Montagu M., Boerjan W., Inzé D. & Goossens A. 2008. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc. Natl. Acad. Sci. USA 105: 1380–1385. http://dx.doi.org/10.1073/pnas.0711203105CrossrefGoogle Scholar

  • [20] Sasaki K., Hiraga S., Ito H., Seo S., Matsui H. & Ohashi Y. 2002. A wound-inducible tobacco peroxidase gene expresses preferentially in the vascular system. Plant Cell Physiol. 43: 108–117. http://dx.doi.org/10.1093/pcp/pcf013CrossrefGoogle Scholar

  • [21] Sato Y., Sugiyama M., Górecki R.J., Fukuda H. & Komamine A. 1993. Interrelationship between lignin deposition and the activities of peroxidase isoenzymes in differentiating tracheary elements of Zinnia: analysis using L-α-aminooxy-β-phenylpropionic acid and 2-aminoindan-2-phosphonic acid. Planta 189: 584–589 http://dx.doi.org/10.1007/BF00198223Google Scholar

  • [22] Sato Y., Sugiyama M., Komamine A. & Fukuda H. 1995. Separation and characterization of the isoenzymes of wall-bound peroxidase from cultured Zinnia cells during tracheary element differentiation. Planta 196: 141–147. http://dx.doi.org/10.1007/BF00193227CrossrefGoogle Scholar

  • [23] Sato Y., Watanabe T., Komamine A., Hibino T., Shibata D., Sugiyama M. & Fukuda H. 1997. Changes in the activity and mRNA of cinnamyl alcohol dehydrogenase during tracheary element differentiation in Zinnia. Plant Physiol. 113: 425–430. http://dx.doi.org/10.1104/pp.113.2.425CrossrefGoogle Scholar

  • [24] Sato Y., Demura T., Yamawaki K., Inoue Y., Sato S., Sugiyama M. & Fukuda H. 2006. Isolation and characterization of a novel peroxidase gene ZPO-C of which expression and function are closely associated with lignification during tracheary element differentiation. Plant Cell Physiol. 47: 493–503. http://dx.doi.org/10.1093/pcp/pcj016CrossrefGoogle Scholar

  • [25] Siegel S.M. 1953. On the biosynthesis of lignin. Physiol. Plant. 6: 134–139. http://dx.doi.org/10.1111/j.1399-3054.1953.tb08937.xCrossrefGoogle Scholar

  • [26] Simola L.K., Lemmethyinen J. & Santanen A. 1992. Lignin release and photomixotrophism in suspension cultures of Picea abies. Physiol. Plant. 84: 374–379. http://dx.doi.org/10.1111/j.1399-3054.1992.tb04678.xCrossrefGoogle Scholar

  • [27] Sugiyama M., Yeung E.C., Shoji Y. & Komamine A. 1995. Possible involvement of DNA-repair events in the transdifferentiation of mesophyll cells of Zinnia elegans into tracheary elements. J. Plant Res. 108: 351–361. http://dx.doi.org/10.1007/BF02344360CrossrefGoogle Scholar

  • [28] Tokunaga N., Sakakibara N., Umezawa T., Ito Y., Fukuda H. & Sato Y. 2005. Involvement of extracellular dilignols in lignification during tracheary element differentiation of isolated Zinnia mesophyll cells. Plant Cell Physiol. 46: 224–232. http://dx.doi.org/10.1093/pcp/pci017CrossrefGoogle Scholar

  • [29] Tokunaga N., Uchimura N. & Sato Y. 2006. Involvement of gibberellin in tracheary element differentiation and lignification in Zinnia xylogenic culture. Protoplasma 228: 179–187. http://dx.doi.org/10.1007/s00709-006-0180-4CrossrefGoogle Scholar

  • [30] Tokunaga N., Kaneta T., Sato S. & Sato Y. 2009. Analysis of expression profiles of three peroxidase genes associated with lignification in Arabidopsis thaliana. Physiol. Plant. 136: 237–249. http://dx.doi.org/10.1111/j.1399-3054.2009.01233.xCrossrefGoogle Scholar

About the article

Published Online: 2010-12-21

Published in Print: 2011-02-01

Citation Information: Biologia, Volume 66, Issue 1, Pages 88–95, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0130-7.

Export Citation

© 2011 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Nino A. Espinas, Koichi Kobayashi, Yasushi Sato, Nobuyoshi Mochizuki, Kaori Takahashi, Ryouichi Tanaka, and Tatsuru Masuda
Frontiers in Plant Science, 2016, Volume 7
Christine Devillard and Christian Walter
New Zealand Journal of Forestry Science, 2014, Volume 44, Number 1
John Gray, David Caparrós-Ruiz, and Erich Grotewold
Plant Science, 2012, Volume 184, Page 112

Comments (0)

Please log in or register to comment.
Log in