Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 66, Issue 1

Issues

The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal-contaminated site

Edita Karelová / Jana Harichová / Tatjana Stojnev / Domenico Pangallo / Peter Ferianc
Published Online: 2010-12-21 | DOI: https://doi.org/10.2478/s11756-010-0145-0

Abstract

In this study we performed a phylogenetic analysis of a culturable bacterial community isolated from heavymetal-contaminated soil from southwest Slovakia using 16S rRNA (16S rDNA) and heavy-metal resistance genes. The soil sample contained high concentrations of nickel (2,109 mg/kg), cobalt (355 mg/kg) and zinc (177 mg/kg), smaller concentrations of iron (35.75 mg/kg) and copper (32.2 mg/kg), and a trace amount of cadmium (<0.25 mg/kg). A total of 100 isolates were grown on rich (Nutrient agar No. 2) or minimal (soil-extract agar medium) medium. The isolates were identified by phylogenetic analysis using partial sequences of their 16S rRNA (16S rDNA) genes. Representatives of two broad taxonomic groups, Firmicutes and Proteobacteria, were found on rich medium, whereas four taxonomic groups, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, were represented on minimal medium. Forty-two isolates grown on rich medium were assigned to 20 bacterial species, while 58 bacteria grown on minimal medium belonged to 49 species. Twenty-three isolates carried czcA- and/or nccA-like heavy-metal-resistance determinants. The heavy-metalresistance genes of nine isolates were identified by phylogenetic analysis of their protein sequences.

Keywords: bacterial community structure; cultivation-dependent approaches; isolation of until now uncultured bacteria; heavy-metal-contaminated soil; heavy-metal resistance genes

  • [1] Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J Mol. Biol. 215: 403–410. Google Scholar

  • [2] Ashraf R. & Ali T.A. 2007. Effect of heavy metals on soil microbial community and mung beans seed germination. Pak. J. Bot. 39: 629–636. Google Scholar

  • [3] Becker J.M., Parkin T., Nakatsu C.H., Wilbur J.D. & Konopka A. 2006. Bacterial activity, community structure, and centimetre-scale spatial heterogeneity in contaminated soil. Microb. Ecol. 51: 220–231. http://dx.doi.org/10.1007/s00248-005-0002-9CrossrefGoogle Scholar

  • [4] Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2010. GenBank. Nucleic Acids Res. 38 (Database issue): D46–D51. http://dx.doi.org/10.1093/nar/gkp1024CrossrefGoogle Scholar

  • [5] Bogdanova E.S., Bass I.A., Minakhin L.S., Petrova M.A., Mindlin S.Z., Volodin A.A., Kalyaeva E.S., Tiedje J.M., Hobman J.L., Brown N.L. & Nikiforov V.G. 1998. Horizontal spread of mer operons among Gram-positive bacteria in natural environments. Microbiology 144: 609–620. http://dx.doi.org/10.1099/00221287-144-3-609CrossrefGoogle Scholar

  • [6] Chapman P.M. 1999. The role of soil microbial tests in ecological risk assessment. Hum. Ecol. Risk Assess. 5: 657–660. http://dx.doi.org/10.1080/10807039991289554CrossrefGoogle Scholar

  • [7] Chovanová K., Sládeková D., Kmeť V., Prokšová M., Harichová J., Puškárová A., Polek B. & Ferianc P. 2004. Identification and characterization of eight cadmium resistant bacterial isolates from a cadmium-contaminated sewage sludge. Biologia 59: 817–827. Google Scholar

  • [8] Ellis R.J., Morgan P., Weightman A.J. & Fry J.C. 2003. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69: 3223–3230. http://dx.doi.org/10.1128/AEM.69.6.3223-3230.2003CrossrefGoogle Scholar

  • [9] Erbe J.L., Taylor K.B. & Hall L.M. 1995. Metalloregulation of the cyanobacterial smt locus: identification of SmtB binding sites and direct interaction with metals. Nucleic Acids Res. 23: 2472–2478. http://dx.doi.org/10.1093/nar/23.13.2472CrossrefGoogle Scholar

  • [10] Hamaki T., Suzuki M., Fudou R., Jojima Y., Kajiura T., Tabuchi A., Sen K. & Shibai H. 2005. Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J. Biosci. Bioeng. 99: 485–492. http://dx.doi.org/10.1263/jbb.99.485CrossrefGoogle Scholar

  • [11] Huang C.C., Narita M., Yamagata T., Itoh Y. & Endo G. 1999. Structure analysis of a class II transposon encoding the mercury resistance of the gram-positive bacterium Bacillus megaterium MB1, a strain isolated from Minamata Bay, Japan. Gene 234: 361–369. http://dx.doi.org/10.1016/S0378-1119(99)00184-5Google Scholar

  • [12] Hugenholtz P. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biol. 3: reviews0003-reviews0003.8. CrossrefGoogle Scholar

  • [13] Ji G. & Silver S. 1992. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J. Bacteriol. 174: 3684–3694. Google Scholar

  • [14] Joseph S.J., Hugenholtz P., Sangwan P., Osborne C.A. & Janssen P.H. 2003. Laboratory cultivation of widespread and previously unculturable soil bacteria. Appl. Environ. Microbiol. 69: 7210–7215. http://dx.doi.org/10.1128/AEM.69.12.7210-7215.2003CrossrefGoogle Scholar

  • [15] Kandeler E., Tscherko D., Bruce K.D., Stemmer M., Hobbs P.J., Bardgett R.D. & Amelung W. 2000. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol. Fertil. Soils 32: 390–400. http://dx.doi.org/10.1007/s003740000268CrossrefGoogle Scholar

  • [16] Khan S., Hesham A.E-L., Qiao M., Rehman S. & He J.Z. 2010. Effect of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Polut. Res. 17: 288–296. http://dx.doi.org/10.1007/s11356-009-0134-4CrossrefGoogle Scholar

  • [17] Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120. http://dx.doi.org/10.1007/BF01731581CrossrefGoogle Scholar

  • [18] Lane D.J. 1991. 16S/23S rRNA sequencing, pp. 115–148. In: Stackebrandt E. & Goodfellow M. (eds), Nucleic Acid Techniques in Bacterial Systematics, John Wiley & Sons, New York. Google Scholar

  • [19] Matyar F., Akkan T., Uçak Y. & Eraslan B. 2010. Aeromonas and Pseudomonas: antibiotic and heavy metal resistance species from Iskenderun Bay, Turkey (northeast Mediterranean Sea). Environ. Monit. Assess. 167: 309–320. http://dx.doi.org/10.1007/s10661-009-1051-1CrossrefWeb of ScienceGoogle Scholar

  • [20] Mera N. & Iwasaki K. 2007. Use of plate-wash samples to monitor the fates of culturable bacteria in mercuryand trichloroethylene-contaminated soils. Appl. Microbiol. Biotechnol. 77: 437–445. http://dx.doi.org/10.1007/s00253-007-1152-0Web of ScienceCrossrefGoogle Scholar

  • [21] Mergeay M., Monchy S., Vallaeys T., Auquier V., Benotmane A., Bertin P., Taghavi S., Dunn J., Van Der Lelie D. & Wattiez R. 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metalresponsive genes. FEMS Microbiol. Rev. 27: 385–410. http://dx.doi.org/10.1016/S0168-6445(03)00045-7CrossrefGoogle Scholar

  • [22] Mitsui H., Gorlach K., LEE H.J., Hattori R. & Hattori T. 1997. Incubation time and media requirements of culturable bacteria from different phylogenetic groups. J. Microbiol. Methods 30: 103–110. http://dx.doi.org/10.1016/S0167-7012(97)00052-3CrossrefGoogle Scholar

  • [23] Mobley H.L., Chen C.M., Silver S. & Rosen B.P. 1983. Cloning and expression of R-factor mediated arsenate resistance in Escherichia coli. Mol. Gen. Genet. 191: 421–426. http://dx.doi.org/10.1007/BF00425757CrossrefGoogle Scholar

  • [24] Nascimento A.M.A. & Chartone-Souza E. 2003. Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet. Mol. Res. 2: 92–101. Google Scholar

  • [25] Ogilvie L.A. & Grant A. 2008. Linking pollution induced community tolerance (PICT) and microbial community structure in chronically metal polluted estuarine sediments. Mar. Environ. Res. 65: 187–198. http://dx.doi.org/10.1016/j.marenvres.2007.10.002Web of ScienceCrossrefGoogle Scholar

  • [26] Page R.D. 1996. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357–358. Google Scholar

  • [27] Pandey S., Saha P., Barai P.K. & Maiti T.K. 2010. Characterization of a Cd2+ -resistant strain of Ochrobactrum sp. Isolated from slag disposal site of an iron and steel factory. Curr. Microbiol. 61: 106–111. http://dx.doi.org/10.1007/s00284-010-9583-8CrossrefGoogle Scholar

  • [28] Pechrada J., Sajjaphan K. & Sadowsky M.J. 2010. Structure and diversity of arsenic-resistant bacteria in an old tin mine area of Thailand. J. Microbiol. Biotechnol. 20: 169–178. Web of ScienceGoogle Scholar

  • [29] Prakash O., Gihring T.M., Dalton D.D., Chin K.-J., Green S.J., Akob D.M., Wanger G. & Kostka J.E. 2010. Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. Int. J. Syst. Evol. Microbiol. 60: 546–553. http://dx.doi.org/10.1099/ijs.0.010843-0Web of ScienceCrossrefGoogle Scholar

  • [30] Ranjard L., Brothier E. & Nazaret S. 2000. Sequencing bands of ribosomal intergenic spacer analysis fingerprints for characterization and microscale distribution of soil bacterium populations responding to mercury spiking. Appl. Environ. Microbiol. 66: 5334–5339. http://dx.doi.org/10.1128/AEM.66.12.5334-5339.2000CrossrefGoogle Scholar

  • [31] Ranjard L., Lignier L. & Chaussod R. 2006. Cumulative effect of short-term polymetal contamination on soil bacterial community structure. Appl. Environ. Microbiol. 72: 1684–1687. http://dx.doi.org/10.1128/AEM.72.2.1684-1687.2006CrossrefGoogle Scholar

  • [32] Rosenstein R., Peschel A., Wieland B. & Götz F. 1992. Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J. Bacteriol. 174: 3676–3683. Google Scholar

  • [33] Saitou N. & Nei M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425. Web of ScienceGoogle Scholar

  • [34] Saltikov C.W. & Olson B.H. 2002. Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters. Appl. Environ. Microbiol. 68: 280–288. http://dx.doi.org/10.1128/AEM.68.1.280-288.2002CrossrefGoogle Scholar

  • [35] Sandaa R.A., Torsvik V. & Enger Ø. 2001. Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biol. Biochem. 33: 287–295. http://dx.doi.org/10.1016/S0038-0717(00)00139-5CrossrefGoogle Scholar

  • [36] Sandaa R.A., Torsvik V., Enger Ø., Daae F.L., Castberg T. & Hahn D. 2006. Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol. Ecol. 30: 237–251. Google Scholar

  • [37] Schmidt T. & Schlegel H.G. 1994. Combined nickel-cobaltcadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J. Bacteriol. 176: 7045–7054. Google Scholar

  • [38] Silver S. & Phung L.T. 1996. Bacterial heavy metal resistance: New surprises. Ann. Rev. Microbiol. 50: 753–789. doi:10.1146/annurev.micro.50.1.753. http://dx.doi.org/10.1146/annurev.micro.50.1.753CrossrefGoogle Scholar

  • [39] Smiejan A., Wilkinson K.J. & Rossier C. 2003. Cd bioaccumulation by a freshwater bacterium, Rhodospirillum rubrum. Environ. Sci. Technol. 37: 701–706. http://dx.doi.org/10.1021/es025901hCrossrefGoogle Scholar

  • [40] Taghavi S., Van Der Lelie D. & Mergeay M. 1994. Electroporation of Alcaligenes eutrophus with (mega) plasmids and genomic DNA fragments. Appl. Environ. Microbiol. 60: 3585–3591. Google Scholar

  • [41] Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680. http://dx.doi.org/10.1093/nar/22.22.4673CrossrefGoogle Scholar

  • [42] Xie X., Fu J., Wang H. & Liu J. 2010. Heavy metal resistance by two bacteria strains isolated from a copper mine tailing in China. African J. Biotechnol. 9: 4056–4066. Google Scholar

About the article

Published Online: 2010-12-21

Published in Print: 2011-02-01


Citation Information: Biologia, Volume 66, Issue 1, Pages 18–26, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-010-0145-0.

Export Citation

© 2011 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
N. Yadav and S. Sharma
International Journal of Environmental Science and Technology, 2019
[2]
Zijun Wu, Zhaoyu Kong, Shina Lu, Cheng Huang, Shaoyi Huang, Yinghui He, and Lan Wu
The Journal of General and Applied Microbiology, 2019
[3]
Xingqing Zhao, Jian Huang, Jin Lu, and Yu Sun
Ecotoxicology and Environmental Safety, 2019, Volume 170, Page 218
[4]
Denise M. Akob, Tsing Bohu, Andrea Beyer, Franziska Schäffner, Matthias Händel, Carol A. Johnson, Dirk Merten, Georg Büchel, Kai Uwe Totsche, Kirsten Küsel, and C. R. Lovell
Applied and Environmental Microbiology, 2014, Volume 80, Number 16, Page 5086
[7]
Luo Caigui, Deng Yangwu, Liang Jian, Zhu Sipin, Wei Zhenya, Guo Xiaobin, and Luo Xianping
Journal of Rare Earths, 2018
[8]
Mohamad Yusof Zainun and Khanom Simarani
Science of The Total Environment, 2018, Volume 616-617, Page 269
[9]
Matej Remenár, Jana Harichová, Marcel Zámocký, Domenico Pangallo, Tomáš Szemes, Jaroslav Budiš, Katarína Soltys, and Peter Ferianc
Biologia, 2017, Volume 72, Number 9
[10]
Muhamad Ali K. Shakhatreh, Jacob H. Jacob, Emad I. Hussein, Majed M. Masadeh, Safwan M. Obeidat, Abdul-salam F. Juhmani, and Mutaz A. Abd Al-razaq
Journal of Infection and Public Health, 2017
[11]
Teik Min Chong, Wai-Fong Yin, Jian-Woon Chen, Samuel Mondy, Catherine Grandclément, Denis Faure, Yves Dessaux, and Kok-Gan Chan
AMB Express, 2016, Volume 6, Number 1
[12]
Alexandra Šimonovičová, Katarína Peťková, Ľubomír Jurkovič, Peter Ferianc, Hana Vojtková, Matej Remenár, Lucia Kraková, Domenico Pangallo, Edgar Hiller, and Slavomír Čerňanský
Water, Air, & Soil Pollution, 2016, Volume 227, Number 9
[13]
Matej Remenár, Edita Karelová, Jana Harichová, Marcel Zámocký, Anna Kamlárová, and Peter Ferianc
Applied Soil Ecology, 2015, Volume 95, Page 115
[14]
Matej Remenár, Edita Karelová, Jana Harichová, Marcel Zámocký, Kristína Krčová, and Peter Ferianc
Biologia, 2014, Volume 69, Number 11
[15]
Assia Kaci, Fabienne Petit, Patrick Lesueur, Dominique Boust, Anne Vrel, and Thierry Berthe
Environmental Science and Pollution Research, 2014, Volume 21, Number 18, Page 10787
[16]
Anna M. Lenart-Boroń, Katarzyna A. Wolny-Koładka, Piotr M. Boroń, and JÓZef R. Mitka
Journal of Environmental Science and Health, Part A, 2014, Volume 49, Number 9, Page 1054
[17]
Jana Harichová, Edita Karelová, Domenico Pangallo, and Peter Ferianc
Biologia, 2012, Volume 67, Number 6

Comments (0)

Please log in or register to comment.
Log in