Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 66, Issue 2

Issues

Biochemical changes and adaptive strategies of plants under heavy metal stress

Radha Solanki / Rajesh Dhankhar
Published Online: 2011-02-20 | DOI: https://doi.org/10.2478/s11756-011-0005-6

Abstract

Heavy metal contamination of soil, aqueous waste stream and ground water causes major environmental and human health problems. Heavy metals are major environmental pollutants when they are present in high concentration in soil and show potential toxic effects on growth and development in plants. Due to unabated, indiscriminate and uncontrolled discharge of hazardous chemicals including heavy metals into the environment, plant continuously have to face various environmental constraints. In plants, seed germination is the first exchange interface with the surrounding medium and has been considered as highly sensitive to environmental changes. One of the crucial events during seed germination entails mobilization of seed reserves which is indispensable for the growth of embryonic axis. But, metabolic alterations by heavy metal exposure are known to depress the mobilization and utilization of reserve food by affecting the activity of hydrolytic enzymes. Some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals by which they manage to survive under metal stress. High tolerance to heavy metal toxicity could rely either on reduced uptake or increase planned internal sequestration which is manifested by an interaction between a genotype and its environment. Such mechanism involves the binding of heavy metals to cell wall, immobilization, exclusion of the plasma membrane, efflux of these toxic metal ions, reduction of heavy metal transport, compartmentalization and metal chelation by tonoplast located transporters and expression of more general stress response mechanisms such as stress proteins. It is important to understand the toxicity response of plant to heavy metals so that we can utilize appropriate plant species in the rehabilitation of contaminated areas. Therefore, in the present review attempts have been made to evaluate the effects of increasing level of heavy metal in soils on the key behavior of hydrolytic and nitrogen assimilation enzymes. Additionally, it also provides a broad overview of the strategies adopted by plants against heavy metal stress.

Keywords: heavy metal stress; biochemical food reserves; hydrolytic enzymes; nitrogen assimilation; heavy metal tolerance; detoxification

  • [1] Ahmad Z. & Trifu M. 1980. Studies Univ. Babes-Batyai (Series). Biol. 25: 35–37. Google Scholar

  • [2] Akiyama T. & Suzuki H. 1981. Pfanzenphysiol. 101: 131. Google Scholar

  • [3] Angosto T. & Matilla A. 1990. Physiol. Plant 80: 136–142. Google Scholar

  • [4] Baker A.J.M. 1987. Metal tolerance. New Phytol. 106: 93–111. Google Scholar

  • [5] Bansal P., Sharma P. & Goyal V. 2002. Biol. Plantarum 45: 125–127. Google Scholar

  • [6] Barret-Lennard E.G., Robson A.D. & Greenway H. 1982. J. Exp. Bot. 33: 682–693. Google Scholar

  • [7] Barthes L., Deléens E., Bpusser A., Hoarau J. & Prioul J.L. 1996. J. Exp. Bot. 47: 485–495. Google Scholar

  • [8] Beevers L. & Hageman R.H. 1969. Annu. Rev. Plant Physiol. 20: 495–522. Google Scholar

  • [9] Begum R., Kumar B.K. & Mohanty B.K. 2007. Plant Archieves 7(2): 575–578. Google Scholar

  • [10] Beknazarow B.O. & Valikhanov M.N. 2007. Appl. Biochem. Microbiol. 43: 153–158. Google Scholar

  • [11] Berjak P. & Villers T.A. 1972. New Phytol. 71: 135–144. Google Scholar

  • [12] Bewley J.D. & Black M. 1994. Seeds: Physiology of development and germination. 2 Ed., Plenum Press, New York, London. Google Scholar

  • [13] Bharti N. & Singh R.P. 1993. Phytochemistry. 33: 531–534. Google Scholar

  • [14] Bishnoi N.R., Sheoran I.S. & Singh R. 1993. Photosynthetica 28(1): 583–589. Google Scholar

  • [15] Bonnet M., Camares O. & Viesseire P.H. 2000. J. Exp. Bot. 51: 945–955. Google Scholar

  • [16] Boussama N., Ouariti O., Suzuki A. & Ghorbal M.H. 1999. J. Plant Physiol. 155: 310–317. Google Scholar

  • [17] Bowler C., van Camp W., van Montagu M. & Inze D. 1994. CRC Crit. Rev. Plant Sci. 13: 199–218. Google Scholar

  • [18] Burke D.G., Watkins K. & Scott B.J. 1990. Crop Science. 30: 275–280. Google Scholar

  • [19] Campbell W.H. 1999. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 277–303. Google Scholar

  • [20] Carpene E. & Wynne D. 1986. Comp. Biochem. Physiol. 83B: 163–167. Google Scholar

  • [21] Chen J., Huang J.W., Casper T. & Cunningham S.D. 1997. Arabldopsis as a model system for studying lead accumulation and tolerance in plants, pp. 264–273. In: Kruger E.L. (ed.), Phytoremediation of Soil and Water Contaminants. American Chemical Society, Washington. Google Scholar

  • [22] Chen J., Zaho J. & Goldsbrough P.B. 1997. Physiol. Plant. 101: 165–172. Google Scholar

  • [23] Chettri D.R., Surpratin M. & Ahmad S. 2004. Environ. Ecol. 22(1): 27–33. Google Scholar

  • [24] Chugh L.K., Gupta V.K. & Sawhney S.K. 1992. Phytochem. 31: 395–400. Google Scholar

  • [25] Chugh L.K. & Sawhney S.K. 1996. Environ. Pollut. 92:1–5. Google Scholar

  • [26] Cobbet C. & Goldsbrough P. 2002. Annu. Rev. Plant Biol. 53: 159–182. Google Scholar

  • [27] Cooperman B.S. 1982. Methods Enzymol. 87: 526–548. Google Scholar

  • [28] Crowe L.M., Mourdian R., Crowe J.H., Jackson S.A. & Womersly C. 1984. Biochem Biophys Acta. 769: 141–150. Google Scholar

  • [29] Dasgupta B. & Mukherji S. 1977. Z. Pflanzenphysiol. 82: 95–106. Google Scholar

  • [30] Davies K.J.A. 1987. J. Biochem. Chem. 262: 9895–9901 Google Scholar

  • [31] Davis F.I., Puryear J.D., Newton R.J., Egilla J.N. & Grossi J.A.S. 2001. J. Plant Physiol. 158: 777–786. Google Scholar

  • [32] De Knecht J.A., van Baren N., Ten Bookum W.M., Wong F., Sang H.W., Koevoet P.L.M., Schat H. & Verkleji J.A.C. 1995. Plant Sci. 106: 9–18. Google Scholar

  • [33] Devi S.R. & Prasad M.N.V. 1999. Membrane lipid alterations in heavy metal exposed plants, pp. 99–116. In: Prasad M.N.V. & Hagemmeyer J. (eds), Heavy metal stress in plants: from molecules to ecosystem. Springer-Verlag, Berlin. Google Scholar

  • [34] De Vos R.C.H., Schat H., De Waal M.A.M., Vooijis R. & Ernest W.H.O. 1991. Physiol. Plant. 82: 523–528. Google Scholar

  • [35] Deef H.E.S. 2007. World J. Agricultur. Sci. 3(3): 322–328. Google Scholar

  • [36] Devi P.U., Murugan S., Akilapriyadarshini S., Suja S. & Chinnaswamy P. 2007. Effect of mercury and effluent on seed germination, root-shoot length, amylase activity and phenolic compounds in Vigna unguiculata. 6(3): 457–462. Google Scholar

  • [37] Didierjean L., Frendo P., Nasser W., Genot G., Marivet J. & Burkad G. 1996. Planta. 199: 1–8. Google Scholar

  • [38] Dietz K.J., Baier M. & Kramer U. 1999. Free radicals and reactive oxygen species are mediators of heavy metal toxicity in plants, pp. 79–97. In: Prasad M.N.V. & Hagemmeyer J. (eds), Heavy metal stress in plants: from molecules to ecosystem. Springer-Verlag, Berlin. Google Scholar

  • [39] Dovgulyuk A.I., Kalynyuk T.B. & Blyum Y.B. 2001. Tsitologiyai — Genetica. 35(1): 3–4. Google Scholar

  • [40] Draobzkiewicz M., Skórzyńska-Polit E. & Krupa Z. 2004. Biometals 17: 379–387. Google Scholar

  • [41] Dua A. & Sawhney S.K. 1991. Environ. Exp. Bot. 31: 133–139. Google Scholar

  • [42] Duff S.M.G., Sarath G. & Plaxton W.C. 1994. Physiol Plant. 90: 791–800. Google Scholar

  • [43] Ehsanpour A.A. & Amini F. 2003. Afr. J. Biotechnol. 2: 133–135. Google Scholar

  • [44] Entry J.A., Watrud L.S. & Reeves M. 1999. Environ. Metal Poll. 104: 449–457. Google Scholar

  • [45] Ferreira R.B., Malo T.S. & Teixeira A.N. 1995. Aust. J. Plant Physiol. 22: 373–381. Google Scholar

  • [46] Ferretti M., Ghisi R., Merlo L., Dalla Vecchia F. & Passera C. 1993. Photosynthetica 29: 49–54. Google Scholar

  • [47] Fincher G. 1989. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 305–346. Google Scholar

  • [48] Gahan P.B. & Mc Lean J. 1969. Planta 89: 126–136. Google Scholar

  • [49] Galli U., Schuepp H. & Brunold C. 1996. Planta 198: 139–143. Google Scholar

  • [50] Gautam M., Sengar S.S., Garg S.K., Senger K. & Chaudhary R. 2008. Research J. Phytochem. 2(2): 61–68. Google Scholar

  • [51] Giritch A., Ganal M., Stephan U.W. & Baumlein H. 1998. Plant Mol. Biol. 37: 701–714. Google Scholar

  • [52] Gopal R., Giri V. & Nautiyal N. 2008. Indian J. Plant Physiol. 13(1): 44–49. Google Scholar

  • [53] Gouia H., Ghorbal M.H. & Meyer C. 2000. Plant Physiol Biochem. 38: 629–638. Google Scholar

  • [54] Grill E., Loffer S., Winnacker E.L. & Zenk M.H. 1989. P. Natl. Acad. Sci. USA 86: 6838–6842. Google Scholar

  • [55] Grill E., Winnacker E.L. & Zenk M.H. 1986a. FEBS Lett. 205: 47–50. Google Scholar

  • [56] Grill E., Winnacker E.L. & Zenk M.H. 1987. Proc. Natl. Acad. Sci. USA 8: 439–443. Google Scholar

  • [57] Guo J. & Pesacreta J.C. 1997. J. Plant Physiol. 151: 520–527. Google Scholar

  • [58] Hall J.L. 2002. J. Exp. Bot. 53: 1–11. Google Scholar

  • [59] Hernández L.E. & Cooke D.T. 1997. J. Exp. Bot. 48: 1375–1381. Google Scholar

  • [60] Hernández L.E., Garate A. & Carpena-Ruiz R. 1997. Plant Soil 189: 97–106. Google Scholar

  • [61] Hoehamer C.F., Mazur C.S. & Wolfe N.L. 2005. J. Agric. Food Chem. 53: 90–97. Google Scholar

  • [62] Hopkin W. 1999. Plant and inorganic nutrients, pp. 51–76. In: Hopkin W. (ed.), Introduction to Plant Physiology 2nd ed., Part 2. John Wiley & Sons Inc., New York, Chichester, Weinheim, Brisbane, Singapore, Toronato. Google Scholar

  • [63] Jouili H. & Ezzedine E.F. 2003. C. R. Biol. 326: 639–644. Google Scholar

  • [64] Kaiser W.M., Weiner H. & Huber S.C. 1999. Physiol Plant. 105: 385–390. Google Scholar

  • [65] Karunagaran D. & Ramakrishna Rao P. 1990. Indian J. Plant Physiol. 33: 232–238. Google Scholar

  • [66] Kerkeb L., Donaire J.P., Venema K., Rodriguez-Rosales M.P. 2001. Physiol. Plant. 113: 217–224. Google Scholar

  • [67] Khudsar T., Mahmooduzzafar, Iqbal M. & Sairam R.K. 2004. Biol. Plantarum 48(2): 255–260. Google Scholar

  • [68] Klapheck S., Fleigner W. & Zimmer K. 1994. Plant Physiol. 104: 1325–1332. Google Scholar

  • [69] Klapheck S., Schlunz S. & Bergmann L. 1995. Plant Physiol. 107: 515–521. Google Scholar

  • [70] Krämer U., Cotter-Howells J.D., Charnock J.M., Baker A.J.M. & Smith J.A.C. 1996. Nature 379: 635–638. Google Scholar

  • [71] Kudesia V.P. 1980. Toxicity of metals. pp. 203–217. In: Kudesia V.P. (ed.), Water Pollution. Pragati Prakashan, Meerut, India. Google Scholar

  • [72] Kumar G. & Kesarwani S. 2004. Int. J. Mendel. 2(1–2): 41–42. Google Scholar

  • [73] Kuriakose S.V. & Prasad M.N.V. 2008. Plant Growth Regul. 54: 143–156. Google Scholar

  • [74] Leyval C., Turnau K. & Aaselwandter K. 1997. Mycorrhiza 7: 139–153. Google Scholar

  • [75] Liu C.P., Shen Z.G. & Li X.D. 2007. Biol. Plantarum 51(1): 116–120. Google Scholar

  • [76] Liu J., Xiang Z.T., Li T.Y. & Huang H. 2004. Environ. Exp. Bot. 52: 43–51. Google Scholar

  • [77] Lou L.Q., Shen Z.G. & Li X.D. 2004. Environ. Exp. Bot. 51: 111–120. Google Scholar

  • [78] Luna C.M., Casano L.M. & Trippi V.S. 1997. Physiol. Plant. 101: 103–108. Google Scholar

  • [79] Luna C.M., Casano L.M. & Trippi V.S. 2000. Biol. Plantarum 43(2): 257–262. Google Scholar

  • [80] Maheshwari R. & Dubey R.S. 2007. Plant Growth Regul. 51: 231–243. Google Scholar

  • [81] Maitani T., Kubota H., Sato K. & Yamada T. 1996. Plant Physiol. 110: 1145–1150. Google Scholar

  • [82] Mathys W. 1975. Physiol. Plant. 33: 161–165. Google Scholar

  • [83] Mayer A.M. & Polijakoff-Mayber A. 1982. The germination of seeds. 3rd Ed. Pergamon Press, Oxford. Google Scholar

  • [84] Mayer A.M. & Poljakoff-Mayber A. 1975. The germination of seeds. 2nd edn. Pergamon Press, New York. Google Scholar

  • [85] McNair M.R. 1993. New Phytol. 124: 541–559. Google Scholar

  • [86] McNair M.R., Tilstone G.H. & Smith S.S. 2000. The genetics of metal tolerance and accumulation in higher plants, pp. 235–250. In: Terry N. & Baňuelos G. (eds), Phytoremediation of Contaminated Soils and Water. Lewis Publishers, Boca Raton, FL. Google Scholar

  • [87] Meharg A.A. 1994. Plant Cell Environ. 17: 989–993. Google Scholar

  • [88] Mehra R.K. & Tripathi R.D. 1999. Phytochelatins and metal tolerance, pp. 367–382. In: Agrawal S.B. & Agrawal M. (eds), Environmental Pollution and Plant responses. CRC Press, Lewis Publisher, Boca Ration, FL. Google Scholar

  • [89] Mehra R.K. & Winge D.R. 1988. Arch. Biochem. Biophys. 265: 381–389. Google Scholar

  • [90] Mejre M.A. & Bulow J.K. 2001. Chemosphere 41: 197–207. Google Scholar

  • [91] Meuwly P., Thibault P., Schwan A.L. & Rauser W.E. 1995. Plant J. 7: 391–400. Google Scholar

  • [92] Mihoub A., Chaoui A. & El Ferjani E. 2005. C. R. Biol. 328: 33–41. Google Scholar

  • [93] Mishra S. & Dubey R.S. 2006. J. Plant Physiol. 163(9): 927–936. Google Scholar

  • [94] Mishra S. & Dubey R.S. 2008. Braz. J Plant Physiol. 20(1): 19–28. Google Scholar

  • [95] Mittal S. & Sawhney S.K. 1990. Plant Physiol. Biochem. 17(2): 75–81. Google Scholar

  • [96] Muntz K., Belozersky M.A., Dunaevsky Y.E., Schlereth A. & Tiedemann J. 2001. J Exp Bot. 52: 1741–1752. Google Scholar

  • [97] Murphy A. & Taiz L. 1995. Plant Physiol. 109: 945–954. Google Scholar

  • [98] Murphy A. & Taiz L. 1997. New Phytol. 136: 211–222. Google Scholar

  • [99] Murphy A., Zhou J., Goldsbrough P.B. & Taiz L. 1997. Plant Physiol. 113: 1293–1302. Google Scholar

  • [100] Neumann D., Zur Neiden U., Schwieger W., Leopold I. & Lichtenberger O. 1997. J. Plant Physiol. 151: 101–108. Google Scholar

  • [101] Nieboer E. & Richardson D.H.S. 1980. Environ. Pollut. B1: 3–26. Google Scholar

  • [102] Nies D.H. 1999. Appl. Microb. Biotech. 51: 730. Google Scholar

  • [103] Nishizono H., Watanabe T., Orii T. & Suzuki S. 1989. Plant Cell Physiol. 30: 565–569. Google Scholar

  • [104] Noctor G. & Foyer C.H. 1998. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49: 249–279. Google Scholar

  • [105] Nussbaum S., Schmutz D. & Brunold C. 1988. Plant Physiol. 88: 1407–1410. Google Scholar

  • [106] Okamato T. & Minamikawa T. 1998. J. Plant Physiol. 152: 675–682. Google Scholar

  • [107] Orhanovic S. & Pavela-Vrancic M. 2000. Croat. Chim. Acta 73: 819–830. Google Scholar

  • [108] Osborne D.J. 1980. Senescence in seeds, pp. 13–33. In: Thimann K.V. (ed.), Senescence in plants, CRC Press, Boca Raton, FL. Google Scholar

  • [109] Panara F., Pasqualini S. & Antonielli M. 1990. Biochim. Biophys. Acta 1037: 73–80. Google Scholar

  • [110] Patra M. & Sharma A. 2002. Biologia 57(3): 409–414. Google Scholar

  • [111] Pavadi P., Dhanavel D., Vijayarengan P., Seetharaman N. & Selvaraju M. 2004. Plant Archives 4(2): 475–478. Google Scholar

  • [112] Pena L.B., Zawoznik M.S., Tomaro M.L. & Gallego S.M. 2008. Chemosphere. 72(5): 741–746. Google Scholar

  • [113] Petruzelli L. & Taranto G. 1989. Physiol Plant. 76: 289–294. Google Scholar

  • [114] Pinto E., Sigaud-Kutner T.C.S., Leitao M.A.S., Okamoto O.K., Morse D. & Colepicolo P. 2003. J. Phycol. 39: 1008–1018. Google Scholar

  • [115] Pintro J., Barloy J. & Fallavier P. 1997. J. Plant Nutr. 20: 601–611. Google Scholar

  • [116] Ponquett R.T., Smith M.T. & Ross G. 1992. Seed Sci. Res. 2: 51–54. Google Scholar

  • [117] Powell W.W. & Raymond B.T. 1981. Physiol. Plant. 53: 263–268. Google Scholar

  • [118] Prasad D.D.K. & Prasad A.R.K. 1987. Phytochemistry 26: 881–883. Google Scholar

  • [119] Price N.M. & Morel F.M.M. 1990. Nature. 344: 658–660. Google Scholar

  • [120] Quariti O., Gouia H. & Ghorbal M.H. 1997. Plant Physiol. Biochem. 35: 347–354. Google Scholar

  • [121] Quartacci M.F., Cosi E. & Navari-Izzo F. 2001. J. Exp. Bot. 52: 77–84. Google Scholar

  • [122] Rai V., Vajpayee P., Singh S.N. & Mehrotra S. 2004. Plant Sci. 167: 1159–1169. Google Scholar

  • [123] Rajeshwari J. & Ramakrishanan Rao P. 2002. Indian J. Plant Physiol. 7: 314–320. Google Scholar

  • [124] Ramos I., Esteban E., Lucena J.J. & Gárate A. 2002. Plant Sci. 162: 761–767. Google Scholar

  • [125] Rao K.V.M. & Sresty T.V.S. 2000. Plant Sci. 157: 113–128. Google Scholar

  • [126] Rauser W.E. 1984. J. Plant Physiol. 115: 143–152. Google Scholar

  • [127] Rauser W.E. 1995. Plant Physiol. 109: 1141–1149. Google Scholar

  • [128] Rauser W.E. 1999. Cell Biol. Biophysics 31: 19–48. Google Scholar

  • [129] Rebechini H.M. & Hanzely L. 1974. Z Pflanzenphysiol. 73: 377–386. Google Scholar

  • [130] Reichman S.M. 2002. The responses of plants to metal toxicity: A review focusing on Copper, Manganese and Zinc. Australian Minerals & Energy Environment Foundation, Melbourne, Australia. Google Scholar

  • [131] Reinheckel T., Noack H., Lorenz S., Wiswedel I. & Augustin W. 1998. Free Radical Research 29: 297–305. Google Scholar

  • [132] Robert E.H. & Ellis R. 1982. Physiological, ultrastructural and metabolic aspects of seed viability, pp. 465–483. In: Khan A.A. (ed.), The physiology and biochemistry of seed development, dormancy and germination, Elsevier, New York. Google Scholar

  • [133] Robinson N.J. & Jackson P.J. 1986. Physiol. Plant. 67: 499–506. Google Scholar

  • [134] Saleh A.H. & Abdel-Kader D.Z. 2000. J. Union Arab. Biol. Cairo 8: 45–58. Google Scholar

  • [135] Salin M.L. 1988. Physiol. Plant. 72: 681–689. Google Scholar

  • [136] Salt D.E., Kato N., Krämer U., Smith R.D. & Raskin I. 2000. The role of root excudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of ThlaspiI, pp. 189–200. In: Terry N. & Banuelos G. (eds), Phytoremediation of contaminated soil and water, CRC Press, LLC. Google Scholar

  • [137] Salt D.E. & Rauser W.E. 1995. Plant Physiol. 107: 1239–1301. Google Scholar

  • [138] Sanit`a di Toppi L. & Gabbrielli R. 1999 Environ. Exp. Bot. 41: 105–130. Google Scholar

  • [139] Sativir K.A., Gupta K. & Kaur N. 2000. Plant Growth Regul. 30:61–70. Google Scholar

  • [140] Schat H., Llugany M. & Bernhard R. 2000. Metal-specific patterns of tolerance, uptake and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes, pp. 171–188. In: Terry N. & Banuelos G. (eds), Phytoremediation of contaminated soil and water, CRC Press, LLC. Google Scholar

  • [141] Schat H., Llugamy M., Voojis R., Harley-Whitaker J. & Bleeker P.M. 2002. J. Exp. Bot. 53: 2381–2392. Google Scholar

  • [142] Schlereth A., Standhardt D., Mock H.P. & Muntz K. 2001. Planta 212: 718–727. Google Scholar

  • [143] Schultz P. & Jansen W.A. 1981. Protoplasma 107: 27–45. Google Scholar

  • [144] Schützendübel A., Schwanz P., Teichmann T., Gross K., Langenfeld-Heyser R., Godbold D.L. & Polle A. 2001. Plant Physiol. 127: 887–892. Google Scholar

  • [145] Schützendübel A., Schwanz P., Teichmann T., Gross K., Langenfeld-Heyser R., Godbold D. L. & Polle A. 2002. J. Exp. Bot. 53: 1354–1365. Google Scholar

  • [146] Shah K. & Dubey R.S. 1998. J. Agron. Crop. Sci. 180: 223–231. Google Scholar

  • [147] Shah K., Kumar R.G., Verma S. & Dubey R.S. 2001. Plant Sci. 161: 1135–1144. Google Scholar

  • [148] Shah K. & Nongkynrih J.M. 2007. Biol. Plantarum 51(4): 618–634. Google Scholar

  • [149] Sharma P. & Dubey R.S. 2005. Braz. J. Plant Physiol. 17: 35–52. Google Scholar

  • [150] Sharma S., Virdi P., Gambhir S. & Munshi S.K. 2005. Ind. J. Agric. Biochem. 18: 9–12. Google Scholar

  • [151] Shintinawy Al F. & Ansary Al A. 2000. Biol. Plantarum 43(1): 79–84. Google Scholar

  • [152] Simola L.K. 1976. Z. Pfanzenphysiol. 78: 245–252. Google Scholar

  • [153] Sinha S.K., Srivastava H.S. & Mishra S.K. 1988. Acta Soc. Bot. Pol. 57: 457–463. Google Scholar

  • [154] Sinhal V.K. 2007. Poll. Res. 26(3): 417–420. Google Scholar

  • [155] Široká B., Huttová J., Tamás L., Šimonovičová & Mistrík I. 2004. Biologia 59: 513–517. Google Scholar

  • [156] Smarelli J., Wilbour & Campbell. 1983. Biochem. Biophys. Acta 742: 435–445. Google Scholar

  • [157] Smith S.E. & Mc Nair M.R. 1998. Heridity 80: 760–768. Google Scholar

  • [158] Steffens J.C. 1990. Annu. Rev. Physiol. Plant Mol. Biol. 41: 553–575. Google Scholar

  • [159] Stolt J.P., Sneller F.E.C., Bryngelsson T., Lundborg T. & Schat H. 2003. Environ. Exp. Bot. 49: 21–28. Google Scholar

  • [160] Strange J. & Macnair M.R. 1991. New Phytol. 119: 383–388. Google Scholar

  • [161] Szabo-Nagy A., Galiba G. & Erdei L. 1992. J. Plant Physiol. 140: 629–633. Google Scholar

  • [162] Tabaldi L.A., Ruppenthal R., Cargnelutti D., Morsch V.M., Pereira L.B. & Schetinger M.R.C. 2007. Environ. Exp. Bot. 59(1): 43–48. Google Scholar

  • [163] Taneyama M., Okamoto T., Yamauchi D. & Minamikawa T. 1996. Plant Cell Physiol. 37: 19–26. Google Scholar

  • [164] Taylor G.J. 1991. Current Topics Plant Biochem. Physiol. 10: 57–93. Google Scholar

  • [165] Tomsett A.B. & Thurman D.A. 1988. Plant Cell Environ. 11: 383–394. Google Scholar

  • [166] Tripathi A.K., Tripathi S. & Tripathi S. 1999. J. Environ. Biol. 20: 93–98. Google Scholar

  • [167] Vajpayee P., Sharma S.C., Tripathi R.D., Rai U.N. & Yunus M. 1999. Chemosphere 39: 2159–2169. Google Scholar

  • [168] Vajpayee P., Tripathi R.D., Rai U.N., Ali M.B & Singh S.N. 2000. Chemosphere 41: 1075–1082. Google Scholar

  • [169] Vallee B.L. & Ulmer D.D. 1972. Annu. Rev. Biochem. 41: 91–128. Google Scholar

  • [170] Van Assche F. & Cljsters H. 1986. J. Plant Physiol. 125: 355–360. Google Scholar

  • [171] Van Assche F. & Cljsters H. 1990. Plant Cell Environ. 13:195–206. Google Scholar

  • [172] Villiers T.A. 1973. Ageing and the longevity of seeds, pp. 265–268. In: Heydecker W. (ed.), Seed Ecology, Pennsylvania State University Press, Pennsylvania. Google Scholar

  • [173] Vincent J.B., Crowder M.W. & Averill B.A. 1992. Trends Biochem. Sci. 17: 105–110. Google Scholar

  • [174] Vogeli-Lange R. & Wagner G.J. 1990. Plant Physiol. 92: 1086–1093. Google Scholar

  • [175] Wildner G.F. & Henkel J. 1979. Planta. 146: 223–228. Google Scholar

  • [176] Wilson D.O. & Mc Donald. 1986. Seed Sci. Technol. 14: 269–300. Google Scholar

  • [177] Wilson K.A. 1986. Role of proteolytic enzymes in the mobilization of protein reserves in the germinating dicot seeds, pp. 19–48. In: Dalling M.J. (ed.) Plant Proteolytic Enzymes, CRC Press, Boca Raton, FL. Google Scholar

  • [178] Wojcik M. & Tukiendorf A. 2005. Biol. Plantarum 49: 237–245. Google Scholar

  • [179] Wójcik M., Vangronsveld J., D’Haen J. & Tukiendorf A. 2005. Environ. Exp. Bot. 53: 163–171. Google Scholar

  • [180] Xiang C. & Oliver D.J. 1998. Plant Cell. 10: 1539–1550. Google Scholar

  • [181] Yupsanis T., Eleftheriou P., Pantazaki A. & Georgatsos J.G. 1993. J. Plant Physiol. 141: 257–262. Google Scholar

  • [182] Zayed A.G. & Amin S.H. 2002. J. Plant Nutri. 200: 11–12. Google Scholar

  • [183] Zeid I.M. 2001. Biol. Plant. 44(1):111–115. Google Scholar

  • [184] Zeid I.M. & Abou El Ghate H.M. 2007. Pakist. J. Biol. Sci. 10(6): 874–879. Google Scholar

  • [185] Zenk M.H. 1996. Gene 179: 21–30. Google Scholar

  • [186] Zhou J. & Goldsbrough P.B. 1994. Plant Cell. 6: 875–884. Google Scholar

  • [187] Zornoza P., Vázquez S., Esteban E., Fernández-Pascual M. & Carpena R. 2002. Plant Physiol. Biochem. 40: 1003–1009. Google Scholar

About the article

Published Online: 2011-02-20

Published in Print: 2011-04-01


Citation Information: Biologia, Volume 66, Issue 2, Pages 195–204, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-011-0005-6.

Export Citation

© 2011 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Andresa Lana Thomé Bizzo, Aline Chaves Intorne, Pollyana Honório Gomes, Marina Satika Suzuki, and Bruno dos Santos Esteves
Acta Limnologica Brasiliensia, 2014, Volume 26, Number 3, Page 268
[2]
Kamal Usman, Mohammed H. Abu-Dieyeh, and Mohammad A. Al-Ghouti
Environmental Pollutants and Bioavailability, 2019, Volume 31, Number 1, Page 145
[3]
Z T Gan, T Yao, X S She, P Q Zhang, S Q Wang, Y Wang, Y Y Tan, and N Qi
IOP Conference Series: Earth and Environmental Science, 2019, Volume 267, Page 042023
[4]
Jiang-tao Fu, Dong-mei Yu, Xi Chen, Ying Su, Cai-hong Li, and Yong-ping Wei
Journal of Mountain Science, 2019, Volume 16, Number 9, Page 2079
[5]
Julian Preiner, Stefanie Wienkoop, Wolfram Weckwerth, and Eva Oburger
Frontiers in Plant Science, 2019, Volume 10
[7]
Luís A. B. Novo, Eduardo F. Silva, Andrea Pereira, Alba Casanova, and Luís González
Environmental Science and Pollution Research, 2018
[9]
Subhajit Dutta, Mehali Mitra, Puja Agarwal, Kalyan Mahapatra, Sayanti De, Upasana Sett, and Sujit Roy
Plant Signaling & Behavior, 2018, Page 1
[10]
Marcin Pigłowski
International Journal of Environmental Research and Public Health, 2018, Volume 15, Number 2, Page 365
[11]
Omena Ojuederie and Olubukola Babalola
International Journal of Environmental Research and Public Health, 2017, Volume 14, Number 12, Page 1504
[12]
Taoufik El Rasafi, Mohamed Nouri, and Abdelmajid Haddioui
Geosystem Engineering, 2017, Page 1
[13]
Tasir S. Per, M. Iqbal R. Khan, Naser A. Anjum, Asim Masood, Sofi J. Hussain, and Nafees A. Khan
Environmental and Experimental Botany, 2017
[14]
N . A. Majid, I. C. Phang, and D. S. Darnis
Environmental Science and Pollution Research, 2017
[15]
[16]
Kasi Viswanath Kotapati, Bhagath Kumar Palaka, and Dinakara Rao Ampasala
The Crop Journal, 2017, Volume 5, Number 3, Page 240
[17]
S. Willscher, L. Jablonski, Z. Fona, R. Rahmi, and J. Wittig
Hydrometallurgy, 2017, Volume 168, Page 153
[18]
Ying Ma, Rui S. Oliveira, Helena Freitas, and Chang Zhang
Frontiers in Plant Science, 2016, Volume 7
[19]
Xiang Shi, Yi-Tai Chen, Shu-Feng Wang, Hong-Wei Pan, Hai-Jing Sun, Cai-Xia Liu, Jian-Feng Liu, and Ze-Ping Jiang
International Journal of Phytoremediation, 2016, Volume 18, Number 11, Page 1155
[21]
Jichul Bae, Diane L. Benoit, and Alan K. Watson
Environmental Pollution, 2016, Volume 213, Page 112
[22]
Stanislava Vondráčková, Pavel Tlustoš, Michal Hejcman, and Jiřina Száková
Journal of Soils and Sediments, 2017, Volume 17, Number 5, Page 1279
[23]
Anamika Kushwaha, Radha Rani, Sanjay Kumar, and Aishvarya Gautam
Environmental Reviews, 2016, Volume 24, Number 1, Page 39
[24]
A. Bernardini, E. Salvatori, S. Di Re, L. Fusaro, G. Nervo, and F. Manes
Photosynthetica, 2016, Volume 54, Number 1, Page 56
[25]
Naser A. Anjum, Mirza Hasanuzzaman, Mohammad A. Hossain, Palaniswamy Thangavel, Aryadeep Roychoudhury, Sarvajeet S. Gill, Miguel A. Merlos Rodrigo, Vojtěch Adam, Masayuki Fujita, Rene Kizek, Armando C. Duarte, Eduarda Pereira, and Iqbal Ahmad
Frontiers in Plant Science, 2015, Volume 6
[26]
Melanie Mehes-Smith and Kabwe K. Nkongolo
Water, Air, & Soil Pollution, 2015, Volume 226, Number 4
[27]
Abolghassem Emamverdian, Yulong Ding, Farzad Mokhberdoran, and Yinfeng Xie
The Scientific World Journal, 2015, Volume 2015, Page 1
[28]
B. Usharani and N. Vasudevan
Archives of Environmental & Occupational Health, 2016, Volume 71, Number 2, Page 102
[29]
Irina Shtangeeva
Water, Air, & Soil Pollution, 2014, Volume 225, Number 6
[30]
Daniela Pavlíková, Milan Pavlík, Dagmar Procházková, Veronika Zemanová, František Hnilička, and Naďa Wilhelmová
Journal of Plant Physiology, 2014, Volume 171, Number 7, Page 559
[31]
Luís A. B. Novo and Luís González
The Scientific World Journal, 2014, Volume 2014, Page 1
[32]
Punesh Sangwan, Vinod Kumar, R. S. Khatri, and U. N. Joshi
Journal of Botany, 2013, Volume 2013, Page 1
[33]
Daniela Pavlíková, Veronika Zemanová, Dagmar Procházková, Milan Pavlík, Jiřina Száková, and Naďa Wilhelmová
Ecotoxicology and Environmental Safety, 2014, Volume 100, Page 166
[34]
Saeed Rauf, Muhammad Sajjad Haider, Sultan Ali Tariq, Mahwish Ejaz, Ejaz Ashraf, and Ijaz Rasool Noorka
Bioremediation Journal, 2013, Volume 17, Number 4, Page 212
[35]
Aurora Neagoe, Virgil Iordache, Hans Bergmann, and Erika Kothe
Journal of Plant Nutrition and Soil Science, 2013, Volume 176, Number 2, Page 273
[36]
Xiao Wang, Zhong-Wei Zhang, Shi-Hua Tu, Wen-Qiang Feng, Fei Xu, Feng Zhu, Da-Wei Zhang, Jun-Bo Du, Shu Yuan, and Hong-Hui Lin
Biologia, 2013, Volume 68, Number 1
[37]
R.A. Street
South African Journal of Botany, 2012, Volume 82, Page 67
[38]
Dimitrios Savvas, Georgia Ntatsi, and Pantelis Barouchas
Scientia Horticulturae, 2013, Volume 149, Page 86
[39]
Georgeta Ciobanu and Adriana Samide
Journal of Thermal Analysis and Calorimetry, 2013, Volume 111, Number 2, Page 1139
[40]
Milan Pavlík, Daniela Pavlíková, Veronika Zemanová, František Hnilička, Veronika Urbanová, and Jiřina Száková
Ecotoxicology and Environmental Safety, 2012, Volume 79, Page 101

Comments (0)

Please log in or register to comment.
Log in