Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 66, Issue 2


Cloning and expression of β-glucosidase gene from Bacillus licheniformis into E. coli BL 21 (DE3)

Sana Zahoor / Muhammad Javed / Muhammad Aftab / Ikram-ul-Haq
Published Online: 2011-02-20 | DOI: https://doi.org/10.2478/s11756-011-0020-7


A 1.4 Kb fragment of Bacillus licheniformis ATCC 14580 encoding β-glucosidase was cloned and expressed in Escherichia coli. β-Glucosidase expressed by E. coli harboring cloned gene was located entirely in the intracellular fraction. Recombinant β-glucosidase protein was purified to homogeneity level and the molecular weight was found to be 53 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. It gave maximum activity at 50°C and pH 6. K m and V max were 0.206 mM and 1.26 U/mg, respectively, with p-nitrophenyl-β-D-glucopyranoside, while activation energy Ea, enthalpy of activation ?H and entropy of activation ΔS were found to be 66.31 kJ/mol, 64.04 kJ/mol and 48.28 J/mol/K, respectively. The pKa1 and pKa2 of the ionizable groups of active site residues involved in Vmax were found to be 5.5 and 7.0, respectively. When the recombinant β-glucosidase protein was used as a member of consortium with endoglucanase and exoglucanase for the saccharification of wheat straw, 123% increase in saccharification was observed.

Keywords: β-glucosidase; Bacillus licheniformis; cloning; expression

  • [1] Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410 Google Scholar

  • [2] Binate S., N’Dri D., Toka M. & Kouame L.P. 2008. Purification and characterization of two β-glucosidases from termite workers Macrotemes bellicosus (Termitidae: Macrotermitinae). J. Appl. Biosci. 10: 461–470. Google Scholar

  • [3] Birnboim C.H. & Doly J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513–1515. http://dx.doi.org/10.1093/nar/7.6.1513CrossrefGoogle Scholar

  • [4] Bradford M.M. 1976. A rapid and sensitive method for the quantitation of the microgram quantities of the protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254. http://dx.doi.org/10.1016/0003-2697(76)90527-3CrossrefGoogle Scholar

  • [5] Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V. & Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37(Database Issue): D233–D238. http://dx.doi.org/10.1093/nar/gkn663CrossrefGoogle Scholar

  • [6] Chang M.Y., Kao H.C. & Juang R.S. 2007. Thermal inactivation and reactivity of β-glucosidase immobilized on chitosan clay composite. Int. J. Biol. Macromol. 43: 48–53. http://dx.doi.org/10.1016/j.ijbiomac.2007.10.004Web of ScienceCrossrefGoogle Scholar

  • [7] Choi J.H. & Lee S.Y. 2004. Secretory and extracellular production of recombinant proteins using Escherchia coli. Appl. Microbiol. Biotechnol. 64: 625–635. http://dx.doi.org/10.1007/s00253-004-1559-9CrossrefGoogle Scholar

  • [8] Choi I.S., Wi S.G., Jung S.R., Patel D.H. & Bae H.J. 2009. Characterization and application of recombinant β-glucosidase (BglH) from Bacillus licheniformis KCTC 1918. J. Wood Sci. 55: 329–334. http://dx.doi.org/10.1007/s10086-009-1044-2CrossrefWeb of ScienceGoogle Scholar

  • [9] Christakopoulos P., Kekos D., Kolisis F.N. & Macris B.J. 1995. Controlling simultaneous production of endoglucanase and β-glucosidase by Fusarium oxysporum in submerged culture. Biotechnol. Lett. 17: 883–888. http://dx.doi.org/10.1007/BF00129023CrossrefGoogle Scholar

  • [10] Clarke A.J., Bray M.R. & Starting H. 1993. β-Glucosidase, β-glucanases and xylanases: their mechanism of catalysis: β-glucosidase, pp. 27–41. In: Biochemistry and Molecular Biology, American Chemical society, Washington (DC). Google Scholar

  • [11] Cohen S.N., Chang A.C. & Hsu L. 1972. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. USA 69: 2110–2114. http://dx.doi.org/10.1073/pnas.69.8.2110CrossrefGoogle Scholar

  • [12] Daroit D.J., Silveira S.T., Hertz P.F. & Brandelli A. 2007. Production of extracellular β-glucosidase by Monascus perpureus on different growth substrates. Process Biochem. 42: 904–908. http://dx.doi.org/10.1016/j.procbio.2007.01.012CrossrefWeb of ScienceGoogle Scholar

  • [13] Dhake A.B. & Patil M.B. 2005. Production of β-glucosidase by Penicillium purpurogenum. Braz. J. Microbiol. 36: 170–176. http://dx.doi.org/10.1590/S1517-83822005000200013CrossrefGoogle Scholar

  • [14] Dixon M. & Webb E.C. 1979. Enzymes, 3rd Ed., Academic Press, New York. Google Scholar

  • [15] Guegen Y., Chemardin P., Janbon G., Arnaud A. & Galzy P. 1996. A very efficient β-glucosidase catalyst for the hydrolysis of flavor precursors of wine and fruit juices. J. Agric. Food Chem. 44: 2336–2340. http://dx.doi.org/10.1021/jf950360jCrossrefGoogle Scholar

  • [16] Gunata Z. & Vallier M.J. 1999. Production of a highly glucose-tolerant extracellular β-glucosidase by three Aspergillus strains. Biotechnol. Lett. 21: 219–223. http://dx.doi.org/10.1023/A:1005407710806CrossrefGoogle Scholar

  • [17] Hamilton L.M., Kelly C.T. & Fogarty M.W. 1998. Raw starch degradation by the non raw starch-adsorbing bacterial α-amylase of Bacillus sp. IMD 434. Carbohydr. Res. 314: 251–257. http://dx.doi.org/10.1016/S0008-6215(98)00300-0CrossrefGoogle Scholar

  • [18] Henrissat B. & Bairoch A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781–788. Google Scholar

  • [19] Henrissat B., Callebaut I., Fabrega S., Lehn P., Mornon. J.P. & Davies G. 1995. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl. Acad. Sci. USA 92: 7090–7094. http://dx.doi.org/10.1073/pnas.92.15.7090CrossrefGoogle Scholar

  • [20] Jager S., Brumbauer A., Feher E., Reczey K. & Kiss L. 2001. Production and characterization of β-glucosidases from different Aspergillus strains.World J. Microbiol. Biotechnol. 17: 455–461. http://dx.doi.org/10.1023/A:1011948405581CrossrefGoogle Scholar

  • [21] Jenkins J., Lo-Leggio L., Harris G. & Pickersgill R. 1995. β-glucosidase, β-galactosidase, family A cellulases, family F xylanases and two barley glycanases from a superfamily of enzymes with 8-fold β/α architecture and with two conserved glutamates near the carboxy terminal ends of β-strands four and seven. FEBS Lett. 362: 281–285. http://dx.doi.org/10.1016/0014-5793(95)00252-5CrossrefGoogle Scholar

  • [22] Jeya M., Joo A.R., Lee K.M., Tiwari M.K., Lee K.M., Kim S.H. & Lee J.K. 2010. Characterization of β-glucosidase from a strain of Penicillium purpurogenum KJS506. Appl. Microbiol. Biotechnol. 86: 1473–1484. http://dx.doi.org/10.1007/s00253-009-2395-8Web of ScienceCrossrefGoogle Scholar

  • [23] Khan F.A.B.A. & Husaini A.A.S.A. 2006. Enhancing α-amylase and cellulase in vivo enzyme expressions on sago pith residue using Bacillus amyloliquefaciens UMAS 1002. Biotechnology (Pakistan) 5: 391–403. http://dx.doi.org/10.3923/biotech.2006.391.403CrossrefGoogle Scholar

  • [24] Knight T.R. & Dick R.P. 2004. Differentiating microbial and stabilized β-glucosidase activity relative to soil quality. Soil Biol. Biochem. 36: 2089–2096. http://dx.doi.org/10.1016/j.soilbio.2004.06.007CrossrefGoogle Scholar

  • [25] Kronstad J.W., Schnepf E. & Whiteley H.R. 1983. Diversity of location for Bacillus thuringiensis crystal protein genes. J. Bacteriol. 154: 419–428. Google Scholar

  • [26] Kuo L.C & Lee K.T. 2008. Cloning, expression and characterization of two β-glucosidases from isoflavone glycoside hydrolyzing Bacillus subtilis natto. J. Agric. Food Chem.56: 119–125. http://dx.doi.org/10.1021/jf072287qCrossrefWeb of ScienceGoogle Scholar

  • [27] Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685. http://dx.doi.org/10.1038/227680a0CrossrefGoogle Scholar

  • [28] Lam K.H., Chow K.C. & Wong W.K. 1998. Construction of an efficient Bacillus subtilis system for extracellular production of heterologous protein. J. Biotechnol. 63: 167–177. http://dx.doi.org/10.1016/S0168-1656(98)00041-8CrossrefGoogle Scholar

  • [29] Lineweaver H. & D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658 666. CrossrefGoogle Scholar

  • [30] Pitson S.M., Seviour R.J. & McDougall B.M. 1999. Induction and carbon source control of extracellular β-glucosidase production in Acremonium persicinum. Mycol. Res. 103: 161–167. http://dx.doi.org/10.1017/S0953756298006777CrossrefGoogle Scholar

  • [31] Niaz M., Ghafoor M.Y., Jabbar A., Wahid A., Rasul E., Ahmed R. & Rashid M.H. 2004. Properties of glucoamylase from a mesophilic fungus Arachniotus citrinus produced under solid state growth condition. Int. J. Biol. Biotechnol. 1: 223–231. Google Scholar

  • [32] Rajoka M.I., Akhtar M.W., Hanif A. & Khalid A.M. 2006. Production and characterization of a highly active cellobiase from Aspergillus niger grown in solid state fermentation. World J. Microbiol. Biotechnol.22: 991–998. http://dx.doi.org/10.1007/s11274-006-9146-0CrossrefGoogle Scholar

  • [33] Rajoka M.I., Durrani I.S. & Khalid A.M. 2004. Kinetics of improved production and thermostability of an intracellular β-glucosidase from a mutant derivative of Cellulomonas biazotea. Biotechnol. Lett. 26: 281–285. http://dx.doi.org/10.1023/B:BILE.0000015426.74418.07CrossrefGoogle Scholar

  • [34] Rajoka M.I. & Malik K.A. 1997. Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates. Biores. Technol. 59: 21–27. http://dx.doi.org/10.1016/S0960-8524(96)00136-8CrossrefGoogle Scholar

  • [35] Riou C., Salmon J.M., Vallier M.J., Gunata Z. & Barre P. 1998. Purification, characterization and substrate specificity of a highly glucose tolerant β-glucosidase from Aspergillus oryzae. Appl. Environ. Microbiol. 64: 3607–3614. Google Scholar

  • [36] Sambrook J., Fritsch E.F. & Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, New York, ISBN 0-87969-309-6. Google Scholar

  • [37] Shoseyov O., Bravdo B.A., Ikan R., Chet I. 1990. Immobilized endo β-glucosidase enriches flavor of wine and passion fruit juice. J. Agric. Food Chem. 27: 1973–1976. Google Scholar

  • [38] Siddiqui K.S., Rashid M.H., Ghauri T.M., Durrani I.S. & Rajoka M.I. 1997a. Purification and characterization of an intracellular β-glucosidase from Cellulomonas biazotea. World J. Microbiol. Biotechnol. 13: 245–247. http://dx.doi.org/10.1023/A:1018510418900CrossrefGoogle Scholar

  • [39] Siddiqui K.S., Rashid M.H. & Rajoka M.I. 1997b. Kinetic analysis of the active site of an intracellular β-glucosidase from Cellulomonas biazotea. Folia Microbiol. 42: 53–58. http://dx.doi.org/10.1007/BF02898646CrossrefGoogle Scholar

  • [40] Snedecor G.W. & Cochrane W.G. 1980. Statistical Methods, 7th Ed., Iowa State University Press, Ames, Iowa, ISBN 0-81381560-6. Google Scholar

  • [41] Tabassum R., Rajoka M.I. & Malik K.A. 1992. Use of chemostat for enhanced production of β-glucosidase by newly isolated anaerobic cellulolytic Clostridium strain RT 9. Appl. Biochem. Biotechnol. 34–35: 317–329. http://dx.doi.org/10.1007/BF02920555CrossrefGoogle Scholar

  • [42] Tajima K., Nakajima K., Yamashita H., Shiba T., Muneketa M. & Takai M. 2001. Cloning and sequencing of the betaglucosidase gene from Acetobacter xylinum ATCC 23769. DNA Res. 8: 263–269. http://dx.doi.org/10.1093/dnares/8.6.263Google Scholar

  • [43] Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680. http://dx.doi.org/10.1093/nar/22.22.4673CrossrefGoogle Scholar

  • [44] Waldeck J., Rammes H.M., Wieland S., Feesche J., Maurer K.H. & Meinhardt F. 2007. Targeted deletion of genes encoding extracellular enzymes in Bacillus licheniformis and the impact on the secretion capability. J. Biotechnol. 130: 124–132. http://dx.doi.org/10.1016/j.jbiotec.2007.03.011Web of ScienceCrossrefGoogle Scholar

  • [45] Wallecha A. & Mishra. S. 2003. Purification and characterization of two β-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochim. Biophys. Acta. 1649: 74–84. Google Scholar

  • [46] Waterhouse A.M., Procter J.B., Martin D.M., Clamp M. & Barton G.J. 2009. Jalview Version 2 — a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189–1191. http://dx.doi.org/10.1093/bioinformatics/btp033Google Scholar

  • [47] Wright R.M, Yablonsky M.D., Shalita Z.P., Goyal A.K. & Eveleigh D.E. 1992. Cloning, characterization and nucleotide sequence of a gene encoding Microbispora bispora BglB, a thermostable β-glucosidase expressed in Escherichia coli. Appl. Environ. Microbiol. 58: 3455–3465. Google Scholar

About the article

Published Online: 2011-02-20

Published in Print: 2011-04-01

Citation Information: Biologia, Volume 66, Issue 2, Pages 213–220, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-011-0020-7.

Export Citation

© 2011 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Zhen Chen, Tong Meng, Zhipeng Li, Peize Liu, Yuanpeng Wang, Ning He, and Dafeng Liang
AMB Express, 2017, Volume 7, Number 1
Weiliang Dong, Menglei Xue, Yue Zhang, Fengxue Xin, Ce Wei, Wenming Zhang, Hao Wu, Jiangfeng Ma, and Min Jiang
Bioresource Technology, 2017, Volume 241, Page 309
Puneet Gupta, Arjun K. Mishra, and Jyoti Vakhlu
International Journal of Biological Macromolecules, 2017, Volume 103, Page 870
Muinat Olanike Kazeem, Umi Kalsom Md Shah, Azhari Samsu Baharuddin, and Nor’ Aini AbdulRahman
Applied Biochemistry and Biotechnology, 2017, Volume 182, Number 4, Page 1318
Shivangi Chamoli, Piyush Kumar, Naveen Kumar Navani, and Ashok Kumar Verma
International Journal of Biological Macromolecules, 2016, Volume 85, Page 425
Gopal Singh, A. K. Verma, and Vinod Kumar
3 Biotech, 2016, Volume 6, Number 1
Johan Alftrén, Kim Ekelund Ottow, and Timothy John Hobley
Journal of Molecular Catalysis B: Enzymatic, 2013, Volume 94, Page 29

Comments (0)

Please log in or register to comment.
Log in