Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year


IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 66, Issue 5 (Oct 2011)

Issues

Characterization of halophilic bacteria from environmental samples from the brackish water of Pulicat Lake, India

Harmesh Sahay
  • National Bureau of Agriculturally Important Microorganisms, Kusmaur, Mau, 275101, Uttar Pradesh, India
  • Email:
/ Surendra Singh
  • Department of Biological Sciences, Rani Durgavati University, Jabalpur, Madhya Pradesh, India
  • Email:
/ Rajeev Kaushik
  • National Bureau of Agriculturally Important Microorganisms, Kusmaur, Mau, 275101, Uttar Pradesh, India
  • Email:
/ Anil Saxena
  • Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
  • Email:
/ Dilip Arora
  • National Bureau of Agriculturally Important Microorganisms, Kusmaur, Mau, 275101, Uttar Pradesh, India
  • Email:
Published Online: 2011-08-08 | DOI: https://doi.org/10.2478/s11756-011-0094-2

Abstract

Culture dependent phenotypic characterization and 16S rDNA based phylogenetic analyses were applied to study the aerobic halophilic bacterial population present in the Pulicat brackish-water Lake of India. Five different media were employed for isolation of bacteria. A total of 198 morphotypes were recovered, purified and screened for salt tolerance in nutrient agar medium amended with 5–25% NaCl. Based on 16S rDNA restriction fragment length polymorphism analysis with three restriction endonucleases, 51 isolates tolerant to 5% or more NaCl were grouped into 29 clusters. Phylogenetic analysis using 16S rRNA gene sequences revealed that 29 strains could further be allocated into two clades: 19 to Firmicutes and 10 to γ-Proteobacteria. Firmicutes included low G+C Gram-positive bacteria related to family Bacillaceae, which included five genera Bacillus, Virgibacillus, Rummelibacillus, Alkalibacillus and Halobacillus. Another genera included in Firmicutes was Salimicrobium halophilum. In the γ-Proteobacteria group, all the isolates belonged to one genus Halomonas, represented by six different species Halomonas salina, H. shengliensis, H. salifodinae, H. pacifica, H. aquamarina and H. halophila. Most of the isolates exhibited cellulase, xylanase, amylase and protease activities.

Keywords: hydrolytic enzymes; halophilic bacteria; phylogenetic analysis; sequencing

  • [1] Adams M.W.W. & Kelly R.M. 1995. Enzymes from microorganisms in extreme environments. Chem. Eng. News 73: 32–42. http://dx.doi.org/10.1021/cen-v073n051.p032CrossrefGoogle Scholar

  • [2] Amoozegar M.A., Malekzadeh F. & Malik K.A. 2003. Production of amylase by newly isolated moderate halophile Halobacillus sp. strain MA-2. J. Microbiol. Methods 52: 353–359. http://dx.doi.org/10.1016/S0167-7012(02)00191-4CrossrefGoogle Scholar

  • [3] Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2010. GenBank. Nucleic Acids Res. 38: D46–D51. http://dx.doi.org/10.1093/nar/gkp1024CrossrefGoogle Scholar

  • [4] Birbir M. & Ilgaz A. 1996. Isolation and identification of bacteria adversely affecting hide and leather quality. J. Soc. Leather Technol. Chem. 80: 147–153. Google Scholar

  • [5] Bowen B.B. & Benison K.C. 2009. Geochemical characteristics of naturally acid and alkaline saline lakes in southern Western Australia: Appl. Geochem. 24: 268–284. http://dx.doi.org/10.1016/j.apgeochem.2008.11.013CrossrefGoogle Scholar

  • [6] Castro G.R., Ferrero M.A., Mendez B.S. & Sineriz F. 1993. Screening and selection of bacteria with high amylolytic activity. Acta Biotechnol. 13: 197–201. http://dx.doi.org/10.1002/abio.370130220CrossrefGoogle Scholar

  • [7] Edwards U., Rogall T., Blocker H., Emde M. & Bottger E.C. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17: 7843–7853. http://dx.doi.org/10.1093/nar/17.19.7843CrossrefGoogle Scholar

  • [8] Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368–376. http://dx.doi.org/10.1007/BF01734359CrossrefGoogle Scholar

  • [9] Garabito M.J., Marquez M.C. & Ventosa A. 1998. Halotolerant Bacillus diversity in hypersaline environments. Can. J. Microbiol. 44: 95–102. Google Scholar

  • [10] Gray J.P. & Herwing R.P. 1996. Phylogenetic analysis of the bacterial communitities in marine sediments. Appl. Environ. Microbiol. 62: 4049–4059. Google Scholar

  • [11] Horikoshi K. 1991. Microorganisms in Alkaline Environment. Kodansha, Tokyo, 275 pp. Google Scholar

  • [12] Horikoshi K. 1999. Alkaliphiles: some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63: 735–750. Google Scholar

  • [13] Horikoshi K. & Akiba T. 1982. Alkalophilic Microorganisms: A New Microbial World. Springer, New York. Google Scholar

  • [14] Jaccard P. 1912. The distribution of the flora in the alpine zone. New Phytol. 11: 37–50. http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.xCrossrefGoogle Scholar

  • [15] Jiang H., Dong H., Yu B., Liu X., Li Y., Ji S. & Zhang C.L. 2007. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ. Microbiol. 10: 2603–2621. http://dx.doi.org/10.1111/j.1462-2920.2007.01377.xCrossrefGoogle Scholar

  • [16] Joshi A.A., Kanekar P.P., Kelkar A.S., Shouche Y.S., Vani A.A., Borgave S.B. & Sarnaik S.S. 2008. Cultivable bacterial diversity of alkaline Lonar lake, India. Microb. Ecol. 55: 163–172. http://dx.doi.org/10.1007/s00248-007-9264-8CrossrefGoogle Scholar

  • [17] Kamekura M., Seno Y., Holmes M.L. & Dyall Smith M.L. 1992. Molecular cloning and sequencing of the gene for a halophilic alkaline serine protease (halolysin) from an unidentified halophilic archaeal strain (172P1) and expression of the gene in Haloferax volcanii. J. Bacteriol. 174: 736–742. Google Scholar

  • [18] Kanekar P.P., Nilegaonkar S.S., Sarnaik S.S. & Kelkar A.S. 2002. Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Biores. Technol. 85: 87–93. http://dx.doi.org/10.1016/S0960-8524(02)00018-4CrossrefGoogle Scholar

  • [19] Kobayashi T., Kanai H., Aono R., Horikoshi K. & Kudo T. 1994. Cloning, expression and nucleotide sequence of the α-amylase gene from the haloalkaliphilic archaeon Natronococcus sp. AH336. J. Bacteriol. 176: 5131–5134. Google Scholar

  • [20] Krulwich T.A. & Guffanti A.A. 1983. Physiology of acidophilic and alkalophilic bacteria. Adv. Microb. Physiol. 24: 173–214. http://dx.doi.org/10.1016/S0065-2911(08)60386-0CrossrefGoogle Scholar

  • [21] Li N., Patel B.K.C., Mijts B.N. & Swaminathan K. 2002. Crystallization of an α-amylase, AmyA, from the thermophilic halophile Halothermothrix orenii. Acta Cryst. D58: 2125–2126. Google Scholar

  • [22] Ma Y., Weizhou Z., Xue Y., Zhon P., Ventosa A. & Grant W.D. 2004. Bacterial diversity of the inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analysis. Extremophiles 8: 45–51. http://dx.doi.org/10.1007/s00792-003-0358-zCrossrefGoogle Scholar

  • [23] Mellado M.E. & Ventosa A. 2003. Biotechnological potential of moderately and extremely halophilic microorganisms, pp. 233–256. In: Barredo J.L. (ed.) Microorganisms for Health Care, Food and Enzyme Production. Research Signpost, Kerala. Google Scholar

  • [24] Nagaraju M., Prasad K.S.S. & Narasimharao K.L. 1990. Geochemistry of lake waters of Pulicat, India. GeoJournal 20: 311–318. http://dx.doi.org/10.1007/BF00642996CrossrefGoogle Scholar

  • [25] Nei M. & Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273. http://dx.doi.org/10.1073/pnas.76.10.5269CrossrefGoogle Scholar

  • [26] Pospiech A. & Neumann B. 1995. A versatile quick-prep of genomic DNA from gram positive bacteria. Trends Genet. 11: 217–218. http://dx.doi.org/10.1016/S0168-9525(00)89052-6CrossrefGoogle Scholar

  • [27] Rohban R., Amoozegar M.A. & Ventosa A. 2009. Screening and isolation of halophilic bacteria producing extracellular hydrolases from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 36: 333–340. http://dx.doi.org/10.1007/s10295-008-0500-0Web of ScienceCrossrefGoogle Scholar

  • [28] Saitou N. & Nei M. 1987. The neighbour joining method a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425. Web of ScienceGoogle Scholar

  • [29] Sharon A., Cantrella L., Casillas M. & Marirosa M. 2006. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol. Res. 110: 962–970. http://dx.doi.org/10.1016/j.mycres.2006.06.005CrossrefGoogle Scholar

  • [30] Takami H., Kobata K., Nagahama T., Kobayashi H., Inoue A. & Horikoshi K. 1999. Biodiversity in deep sea sites located near the south part of Japan. Extremophiles 3: 97–102. http://dx.doi.org/10.1007/s007920050104CrossrefGoogle Scholar

  • [31] Tamura K., Dudley J., Nei M. & Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.2. Mol. Biol. Evol. 24: 1596–1599. http://dx.doi.org/10.1093/molbev/msm092Google Scholar

  • [32] Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL W: improving sensitivity of progressive multiple sequence alignments through sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–7680. http://dx.doi.org/10.1093/nar/22.22.4673CrossrefGoogle Scholar

  • [33] Urakawa H., Tsukamoto K.K. & Ohwada K. 1999. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145: 3305–3315. Google Scholar

  • [34] Ventosa A. & Nieto J.J. 1995. Biotechnological applications and potentialities of halophilic microorganisms. World J. Microbiol. Biotechnol.11: 85–94. http://dx.doi.org/10.1007/BF00339138CrossrefGoogle Scholar

  • [35] Ventosa A., Nieto J.J. & Oren A. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62: 504–544. Google Scholar

  • [36] Waino M., Tindall B.J., Schumann P. & Ingvorsen K. 1999. Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov., transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int. J. Syst. Bacteriol. 49: 821–831. http://dx.doi.org/10.1099/00207713-49-2-821CrossrefGoogle Scholar

  • [37] Wang Y., Wu Y.H., Wang C.S., Xu X.W., Oren A., Zhu X.F. & Wu M. 2008. Halomonas salifodinae sp. nov., a halophilic bacterium isolated from a salt mine in China. Int. J. Syst. Evol. Microbiol. 58: 2855–2858. http://dx.doi.org/10.1099/ijs.0.2008/000729-0Web of ScienceCrossrefGoogle Scholar

  • [38] Wang Y.N., Cai H., Chi C.Q., Lu A.H., Lin X.G., Jiang Z.F. & Wu X.L. 2007. Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude oil utilizing bacterium. Int. J. Syst. Evol. Microbiol. 57: 1222–1226. http://dx.doi.org/10.1099/ijs.0.64973-0CrossrefGoogle Scholar

  • [39] Wejse P.L. & Ingvorsen K. 2003. Purification and characterization of two extremely halotolerant xylanase from a novel halophilic bacterium. Extremophiles 7: 423–431. http://dx.doi.org/10.1007/s00792-003-0342-7CrossrefGoogle Scholar

  • [40] Yeon S.H., Jeong W.J. & Park J.S. 2005. The diversity of culturable organotrophic bacteria from local solar salterns. J. Microbiol. 43: 1–10. Google Scholar

  • [41] Yoon J.H., Kang S.J. & Oh T.K. 2007. Reclassification of Marinococcus albus Hao et al. 1985 as Salimicrobium album gen. nov., comb. nov. and Bacillus halophilus Ventosa et al. 1990 as Salimicrobium halophilum comb. nov., and description of Salimicrobium luteum sp. nov. Int. J. Syst. Evol. Microbiol. 57: 2406–2411. http://dx.doi.org/10.1099/ijs.0.65003-0CrossrefWeb of ScienceGoogle Scholar

  • [42] Yoon J.H., Kang K.H. & Park Y.H. 2003. Halobacillus salinus sp. nov., isolated from a salt lake on the coast of the East Sea in Korea. Int. J. Syst. Evol. Microbiol. 53: 687–693. http://dx.doi.org/10.1099/ijs.0.02421-0CrossrefGoogle Scholar

  • [43] Yoon J.H., Weiss N., Lee K.C., Lee I.S., Kang K.H. & Park Y.H. 2001. Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with L-lysine in the cell wall, and reclassification of Bacillus marinus Rueger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51: 2087–2093. http://dx.doi.org/10.1099/00207713-51-6-2087CrossrefGoogle Scholar

  • [44] Zhou X.H. & Li Z. 2004. CMCase activity assay as a method for cellulose adsorption analysis. Enzyme. Microbiol. Technol. 35: 455–459. http://dx.doi.org/10.1016/j.enzmictec.2004.07.005CrossrefGoogle Scholar

About the article

Published Online: 2011-08-08

Published in Print: 2011-10-01


Citation Information: Biologia, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-011-0094-2.

Export Citation

© 2011 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in