Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year


IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 66, Issue 6 (Dec 2011)

Issues

PCR detection of re-emerging tick-borne pathogen, Anaplasma phagocytophilum, in deer ked (Lipoptena cervi) a blood-sucking ectoparasite of cervids

Bronislava Víchová / Viktória Majláthová / Mária Nováková / Igor Majláth
  • Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, SK-04001, Košice, Slovakia
  • Institute of Biology and Ecology, P.J. Šafárik University, Moyzesova 11, SK-04001, Košice, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ján Čurlík
  • The Section of Parasitology, Diseases of Fish, Bees and Wild Animals, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, SK-04001, Košice, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Bona / Martina Komjáti-Nagyová / Branislav Peťko
  • Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, SK-04001, Košice, Slovakia
  • Faculty of Natural Sciences of Comenius University Bratislava, Mlynská dolina, SK-84215, Bratislava 4, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-10-28 | DOI: https://doi.org/10.2478/s11756-011-0123-1

Abstract

Anaplasma phagocytophilum is an obligate intracellular bacterium, circulating in the natural foci in enzootic, vector-host cycle. In Europe, A. phagocytophilum is transmitted by Ixodes ricinus ticks. In Slovakia, cervids which are considered as naturally infected reservoirs of A. phagocytophilum are besides the ticks commonly infested with insects from the family Hippoboscidae. In this study, the presence of A. phagocytophilum was confirmed in deer keds (Lipoptena cervi) removed from deer by using of molecular approach. Detection of A. phagocytophilum in deer keds represents the remains of infected blood meal taken from infected deer host, what underlines the potential role of these blood-sucking insects in the mechanical transmission of pathogenic bacteria within the susceptible population of wild animals. Moreover, it may suggest the risk for the transmission of A. phagocytophilum or related pathogens to humans and healthy animals via the bite of infected hematophagous ectoparasites.

Keywords: Anaplasma phagocytophilum; deer ked; Lipoptena cervi; anaplasmosis; PCR

  • [1] Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W. & Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17): 3389–3402. DOI: 10.1093/nar/25.17.3389 http://dx.doi.org/10.1093/nar/25.17.3389CrossrefGoogle Scholar

  • [2] Bequaert J. 1939. Hippoboscid flies from North American doves. Science 89(2308): 267–268. DOI: 10.1126/science.89.2308.267-a http://dx.doi.org/10.1126/science.89.2308.267-aCrossrefGoogle Scholar

  • [3] Bequaert J.C. 1953. The hippoboscidae or louse-flies (Diptera) of mammals and birds. Part 1. Structure, physiology and natural history. Entomol. Am. 32 n.s.: 201–209. Google Scholar

  • [4] Blanco J.R., Oteo J.A. 2002. Human granulocytic ehrlichiosis in Europe. Clin Microbiol. Infect. 8(12): 763–72. DOI: 10.1046/j.1469-0691.2002.00557.x http://dx.doi.org/10.1046/j.1469-0691.2002.00557.xCrossrefGoogle Scholar

  • [5] Böe R. & Petersen K. 1991. Lipoptena cervi (Diptera), a potential vector of Megatrypanum trypanosomes of deer (Cervidae). Parasitol. Res. 77(8): 723–725. DOI: 10.1007/BF0092 8691 http://dx.doi.org/10.1007/BF00928691CrossrefGoogle Scholar

  • [6] De La Fuente J., Naranjo V., Ruiz-Fons F., Höfle U., Fernández De Mera I.G., Villanúa D., Almazán C., Torina A., Caracappa S., Kocan K.M. & Gortázar C. 2005. Potential vertebrate reservoir hosts and invertebrate vectors of Anaplasma marginale and A. phagocytophilum in Central Spain. Vector Borne Zoonot. Dis. 5(4): 390–401. DOI: 10.1089/vbz.2005.5.390 http://dx.doi.org/10.1089/vbz.2005.5.390CrossrefGoogle Scholar

  • [7] De la Fuente J., Ruiz-Fons F., Naranjo V., Torina A., Rodríguez O. & Gortázar C. 2008. Evidence of Anaplasma infections in European roe deer (Capreolus capreolus) from southern Spain. Res. Vet. Sci. 84(3): 382–386. DOI: 10.1016/j.rvsc.2007.05.018 http://dx.doi.org/10.1016/j.rvsc.2007.05.018CrossrefWeb of ScienceGoogle Scholar

  • [8] Dehio C., Sauder U. & Hiestand R. 2004. Isolation of Bartonella schoenbuchensis from Lipoptena cervi, a bloodsucking arthropod causing deer ked dermatitis. J. Clin. Microbiol. 42(11): 5320–5323. DOI: 10.1128/JCM.42.11.5320-5323.2004 http://dx.doi.org/10.1128/JCM.42.11.5320-5323.2004CrossrefGoogle Scholar

  • [9] Dumler J.S., Barbet A.F., Bekker C.P., Dasch G.A., Palmer G.H., Ray S.C., Rikihisa Y. & Rurangirwa F.R. 2001. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Microbiol. 51(6): 2145–2165. http://dx.doi.org/10.1099/00207713-51-6-2145CrossrefGoogle Scholar

  • [10] Guy E.C. & Stanek G. 1991. Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. J. Clin. Pathol. 44(7): 610–621. http://dx.doi.org/10.1136/jcp.44.7.610CrossrefGoogle Scholar

  • [11] Haarlov N. 1964. Life cycle and distribution pattern of Lipoptena cervi (L.) (Dipt., Hippobosc.) on Danish deer. Oikos 15(1): 93–129. http://dx.doi.org/10.2307/3564750CrossrefGoogle Scholar

  • [12] Hackman W., Rantanen T. & Vuojolahti P. 1983. Immigration of Lipoptena cervi (Diptera, Hippoboscidae) in Finland, with notes on its biology and medical significance. Notulae Entomologicae 63: 53–59. Google Scholar

  • [13] Haigh J.C., Mackintosh C. & Griffin F. 2002. Viral, parasitic and prion diseases of farmed deer and bison. Rev. Sci. Tech. IOE. 21(2): 219–248. Google Scholar

  • [14] Halos L., Jamal T., Maillard R., Girard B., Guillot J., Chomel B., Vayssier-Taussat M. & Boulouis H.J. 2004. Role of Hippoboscidae flies as potential vectors of Bartonella spp. infecting wild and domestic ruminants. Appl. Environ. Microbiol. 70(10): 6302–6305. DOI: 10.1128/AEM.70.10.6302-6305.2004 http://dx.doi.org/10.1128/AEM.70.10.6302-6305.2004CrossrefGoogle Scholar

  • [15] Hawkins J.A., Love J.N. & Hidalgo R.J. 1982. Mechanical transmission of anaplasmosis by tabanids (Diptera: Tabanidae). Am. J. Vet. Res. 43(4): 732–734. Google Scholar

  • [16] Chen S.M., Dumler, J.S., Bakken, J.S. & Walker, D.H. 1994. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J. Clin. Microbiol. 32(3): 589–595. Google Scholar

  • [17] Kaunisto S., Kortet R., Härkönen L., Härkönen S., Ylönen H. & Laaksonen S. 2009. New bedding site examination-based method to analyse deer ked (Lipoptena cervi) infection in cervids. Parasitol. Res. 104: 919–925. DOI: 10.1007/s00436-008-1273-0 http://dx.doi.org/10.1007/s00436-008-1273-0Web of ScienceCrossrefGoogle Scholar

  • [18] Kawahara M., Rikihisa Y., Lin Q., Isogai E., Tahara K., Itagaki A., Hiramitsu Y. & Tajima T. 2006. Novel genetic variants of Anaplasma phagocytophilum, Anaplasma bovis, Anaplasma centrale, and a novel Ehrlichia sp. in wild deer and ticks on two major islands in Japan. Appl. Environ. Microbiol. 72(2): 1102–1109. DOI: 10.1128/AEM.72.2.1102-1109.2006 http://dx.doi.org/10.1128/AEM.72.2.1102-1109.2006CrossrefGoogle Scholar

  • [19] Kocianová E., Kost’anová Z., Stefanidesová K., Spitalská E., Boldis V., Hucková D., Stanek G. 2008. Serologic evidence of Anaplasma phagocytophilum infections in patients with a history of tick bite in central Slovakia. Wien. Klin. Wochenschr. 120(13–14): 427–431. DOI: 10.1007/s00508-008-1000-y http://dx.doi.org/10.1007/s00508-008-1000-yWeb of ScienceCrossrefGoogle Scholar

  • [20] Kocan K.M., de la Fuente J., Blouin E.F. & Garcia-Garcia, J.C. 2004. Anaplasma marginale (Rickettsiales: Anaplasmataceae): recent advances in defining host-pathogen adaptations of a tick-borne rickettsia. Parasitology 129(Suppl.): 285–300. DOI: 10.1017/S0031182003004700 http://dx.doi.org/10.1017/S0031182003004700CrossrefGoogle Scholar

  • [21] Kočišová A., Lazar P., Letková V. & Goldová J. 2007. The species composition of the blood sucking Diptera (Tabanidae, Simuliidae) and Pupipara in deer breeding farm in East Slovakia. pp. 21–22. In: Janicki Z. (ed.), Book of Abstracts of the 2nd International Symposium “Game and Ecology”, Zagreb. Plitvice Lakes, October 17th to October 20th. ISBN: 978-953-6062-61-4 Google Scholar

  • [22] Kortet R., Harkonen L., Hokkanen P., Harkonen S., Kaitala A., Kaunisto S., Laaksonen S., Kekalainen J. & Ylonen H. 2010. Experiments on the ectoparasitic deer ked that often attacks humans; preferences for body parts, colour and temperature. Bull. Entomol. Res. 100: 279–285. DOI: 10.1017/S0007485309990277 http://dx.doi.org/10.1017/S0007485309990277Web of ScienceCrossrefGoogle Scholar

  • [23] Lane R.S., Mun J., Parker J.M. & White M. 2005. Columbian black-tailed deer (Odocoileus hemionus columbianus) as hosts for Borrelia spp. in northern California. J. Wildl. Dis. 41(1): 115–125. CrossrefGoogle Scholar

  • [24] Liz J.S., Sumner J.W., Pfister K. & Brossard M. 2002. PCR detection and serological evidence of granulocytic ehrlichial infection in roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra). J. Clin. Microbiol. 40(3): 892–897. DOI: 10.1128/JCM.40.3.892-897.2002 http://dx.doi.org/10.1128/JCM.40.3.892-897.2002CrossrefGoogle Scholar

  • [25] Lotric-Furlan S., Petrovec M., Avsic-Zupanc T., Nicholson W.L., Sumner J.W., Childs J.E. & Strle F. 1998. Human ehrlichiosis in central Europe. Wien. Klin. Wochenschr. 110(24): 894–897. Google Scholar

  • [26] Nelson W.A. & Bainborough A.R. 1963. Development in sheep of resistance to the ked Melophagus ovinus (L.). III. Histopathology of sheep skin as a clue to the nature of resistance. Exp. Parasitol. 13: 118–127. http://dx.doi.org/10.1016/0014-4894(63)90061-4CrossrefGoogle Scholar

  • [27] Nováková M., Víchová B., Majláthová V., Lesňáková A., Pochybová M. & PeŢko B. 2010. First case of human granulocytic anaplasmosis from Slovakia. Ann. Agric. Environ. Med. 17(1): 173–175. Google Scholar

  • [28] Petrovec M., Bidovec A., Sumner J.W., Nicholson W.L., Childs J.E. & Avsic-Zupanc T. 2002. Infection with Anaplasma phagocytophila in cervids from Slovenia: evidence of two genotypic lineages. Wien. Klin. Wochenschr. 114(13-14): 641–647. Google Scholar

  • [29] Petrovec M., Lotric Furlan S., Zupanc T.A., Strle F., Brouqui P., Roux V. & Dumler J.S. 1997. Human disease in Europe caused by a granulocytic Ehrlichia species. J. Clin. Microbiol. 35(6): 1556–1559. DOI: 10.1086/313948 CrossrefGoogle Scholar

  • [30] Polin H., Hufnagl P., Haunschmid R., Gruber F. & Ladurner G. 2004. Molecular evidence of Anaplasma phagocytophilum in Ixodes ricinus ticks and wild animals in Austria. J. Clin. Microbiol. 42(5): 2285–2286. DOI: 10.1128/JCM.42.5.2285-2286.2004 http://dx.doi.org/10.1128/JCM.42.5.2285-2286.2004CrossrefGoogle Scholar

  • [31] Potgieter F.T., Sutherland B. & Biggs H.C. 1981. Attempts to transmit Anaplasma marginale with Hippobosca rufipes and Stomoxys calcitrans. Onderstepoort J. Vet. Res. 48: 119–122. Google Scholar

  • [32] Rantanen T., Reunala T., Vuojolahti P. & Hackman W. 1982. Persistent pruritic papules from deer ked bites. Acta Derm. Venereol. 62(4): 307–311. Google Scholar

  • [33] Reeves W.K., Nelder M.P., Cobb K.D. & Dasch G.A. 2006. Bartonella spp. in deer keds, Lipoptena mazamae (Diptera: Hippoboscidae), from Georgia and South Carolina, USA. J. Wildl. Dis. 42(2): 391–396. CrossrefGoogle Scholar

  • [34] Skoracki M., Michalik J., Skotarczak B., Rymaszewska A., Sikora B., Hofman T., Wodecka B. & Sawczuk M. 2006. First detection of Anaplasma phagocytophilum in quill mites (Acari: Syringophilidae) parasitizing passerine birds. Microbes Infect. Inst. Pasteur 8(2): 303–307. DOI: 10.1016/j.micinf.2005.06.029 CrossrefGoogle Scholar

  • [35] Small R.W. 2005. A review of Melophagus ovinus (L.), the sheep ked. Vet. Parasitol. 130(1–2): 141–155. DOI: 10.1016/j.vetpar.2005.03.005 http://dx.doi.org/10.1016/j.vetpar.2005.03.005CrossrefGoogle Scholar

  • [36] Smetanová K., Schwarzová K. & Kocianová E. 2006. Detection of Anaplasma phagocytophilum, Coxiella burnetii, Rickettsia spp., and Borrelia burgdorferi s. l. in ticks, and wild-living animals in western and middle Slovakia. Ann. N. Y. Acad. Sci. 1078: 312–315. DOI: 10.1196/annals.1374.058 http://dx.doi.org/10.1196/annals.1374.058CrossrefGoogle Scholar

  • [37] Stuen S. 2007. Anaplasma phagocytophilum — the most widespread tick-borne infection in animals in Europe. Vet. Res. Commun. 7(Suppl. 1): 79–84. DOI: 10.1007/s11259-007-0071-y http://dx.doi.org/10.1007/s11259-007-0071-yCrossrefWeb of ScienceGoogle Scholar

  • [38] Stuen S., Bergström K., Petrovec M., Van de Pol I. & Schouls L.M. 2003. DDifferences in clinical manifestations and hematological and serological responses after experimental infection with genetic variants of Anaplasma phagocytophilum in sheep. Clin. Diagn. Lab. Immunol. 10(4): 692–695. DOI: 10.1128/CDLI.10.4.692-695.2003 CrossrefGoogle Scholar

  • [39] Štefanidesová E., Boldiš V., KošŢanov Kanka P., Nemethová D. & Špitalská E. 2008. Anaplasma phagocytophilum and Rickettsia helvetica infection in free-ranging ungulates in central Slovakia. Eur. J. Wildl. Res. 54(3): 519–524. DOI: 10.1007/s10344-007-0161-8 http://dx.doi.org/10.1007/s10344-007-0161-8CrossrefWeb of ScienceGoogle Scholar

  • [40] Telford S.R., 3rd. 1997. Risk for acquiring human granulocytic ehrlichiosis: exposure to deer blood or deer ticks? Clin. Infect. Dis. 24(3): 531–533. http://dx.doi.org/10.1093/clinids/24.3.531CrossrefGoogle Scholar

  • [41] Woldehiwet Z. 2006. Anaplasma phagocytophilum in ruminants in Europe. Ann. N.Y. Acad. Sci. 1078: 446–460. DOI: 10.1196/annals.1374.084 http://dx.doi.org/10.1196/annals.1374.084CrossrefGoogle Scholar

  • [42] Zaugg J.L. & Coan M.E. 1986. Test of the sheep ked Melophagus ovinus (L) as a vector of Anaplasma ovis Lestoquard. Am. J. Vet. Res. 47(5): 1060–1062. Google Scholar

About the article

Published Online: 2011-10-28

Published in Print: 2011-12-01


Citation Information: Biologia, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-011-0123-1.

Export Citation

© 2011 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M. Buss, L. Case, B. Kearney, C. Coleman, and J.D. Henning
Journal of Vector Ecology, 2016, Volume 41, Number 2, Page 292
[2]
R. SOKÓŁ and R. GAŁĘCKI
Medical and Veterinary Entomology, 2017, Volume 31, Number 1, Page 114
[4]
Arnout de Bruin, Arieke Docters van Leeuwen, Setareh Jahfari, Willem Takken, Mihály Földvári, László Dremmel, Hein Sprong, and Gábor Földvári
Parasites & Vectors, 2015, Volume 8, Number 1

Comments (0)

Please log in or register to comment.
Log in