Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year




Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 67, Issue 1

Issues

Expression of larval jelly antimicrobial peptide defensin1 in Apis mellifera colonies

Jaroslav Klaudiny / Katarína Bachanová / Lenka Kohútová / Mária Dzúrová / Ján Kopernický
  • Animal Production Research Centre, Institute of Apiculture, Gašperíkova 599, SK-03308, Liptovský Hrádok, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juraj Majtán
  • Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84506, Bratislava, Slovakia
  • Department of Microbiology, Slovak Medical University, Limbová 12, SK-83303, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-01-10 | DOI: https://doi.org/10.2478/s11756-011-0153-8

Abstract

Honeybee brood food, larval jelly (LJ) contains antimicrobial peptide defensin1 that is able to inhibit in vitro growth of the pathogen causing American foulbrood (AFB). This fact suggests that LJ defensin1 could participate in defense of colonies against AFB. We assume that the potential defense function of defensin1 in vivo might depend on its amount in LJs. Therefore, we investigated the expression of defensin1 in colonies. The expression was examined on protein and mRNA levels in colonies of several Apis mellifera carnica lines collected in 3 apiaries (1 infected with AFB) with the aim to identify factors influencing the expression. Levels of defensin1 were determined in royal and worker jellies by a developed immunoblot procedure employing antibodies generated against the recombinant peptide. Defensin1 mRNA levels in nurse heads were explored by dot blot hybridization using transcript of two MRJP genes for normalization. Analyzed LJs contained various amounts of defensin1 (0.159–0.524 μg/mg jelly). Higher variations in defensin1 levels were observed among LJ samples collected from different colonies than among those collected within single colony. Colonies producing LJs with elevated defensin1 levels occurred among various honeybee lines. Levels of defensin1 mRNA varied in heads of nurses and the variations correlated with defensin1 peptide levels in LJs only in some colonies. Obtained data demonstrate that defensin1 is constitutively expressed into LJs in colonies and indicate that its levels in jellies are determined by genetic factors regulating transcription and/or translation/posttranslation processes in nurses. AFB infection, larval age and type of LJ do not seem to affect the levels of the peptide in LJs. Findings made in this work suggest that it should be possible to breed novel honeybee lines expressing higher amounts of defensin1 into LJs.

Keywords: defensin; honeybee disease; American foulbrood; Paenibacillus larvae; honeybee defense; social immunity; honeybee breeding

  • [1] Albert Š., Klaudiny J. & Šimúth J. 1999. Molecular characterization of MRJP3, highly polymorphic protein of honeybee (Apis mellifera) royal jelly. Insect Biochem. Mol. Biol. 29(5): 427–434. PMID: 10380654 http://dx.doi.org/10.1016/S0965-1748(99)00019-3Google Scholar

  • [2] Asencot M. & Lensky Y. 1988. The effect of soluble sugars in stored royal jelly on the differentiation of female honey bee (Apis mellifera L.) larvae to queens. Insect Biochem. 18(2): 127–133. http://dx.doi.org/10.1016/0020-1790(88)90016-9CrossrefGoogle Scholar

  • [3] Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A. & Struhl K. 2000. Current Protocols in Molecular Biology. Massachusetts General Hospital, Harvard Medical School, John Wiley & Sons, Inc. ISBN/ISSN: 978-0-471-50338-5 Google Scholar

  • [4] Bachanová K., Klaudiny J., Kopernický J. & Šimúth J. 2002. Identification of honeybee peptide active against Paenibacillus larvae larvae through bacterial growth-inhibition assay on polyacrylamide gel. Apidologie 33(2): 259–269. DOI: 10.1051/apido:2002015 http://dx.doi.org/10.1051/apido:2002015CrossrefGoogle Scholar

  • [5] Bailey L. & Ball B.V. 1991. Honey Bee Pathology. Academic Press, London, 193 pp. ISBN: 0120734818, 9780120734818 Google Scholar

  • [6] Bamrick J.F. 1964. Resistance to American foulbrood in honey bees. V. Comparative pathogenesis in resistant and susceptible larvae. J. Insect Pathol. 6: 284–304. Google Scholar

  • [7] Bíliková K., Gusui W. & Šimúth J. 2001. Isolation of a peptide fraction from honeybee royal jelly as a potential antifoulbrood factor. Apidologie 32(3): 275–283. DOI: 10.1051/apido:2001129 http://dx.doi.org/10.1051/apido:2001129CrossrefGoogle Scholar

  • [8] Bíliková K., Mirgorodskaya E., Bukovská G., Gobom J., Lehrach H. & Šimúth J. 2009. Towards functional proteomics of minority component of honeybee royal jelly: The effect of post-translational modifications on the antimicrobial activity of apalbumin2. Proteomics 9: 2131–2138. DOI: 10.1002/pmic.200800705 http://dx.doi.org/10.1002/pmic.200800705CrossrefGoogle Scholar

  • [9] Blum M. S., Novak A. F. & Taber S. 1959. 10-hydroxy-Δ2-decenoic acid, an antibiotic found in royal jelly. Science 130(3373): 452–453. DOI: 10.1126/science.130.3373.452 http://dx.doi.org/10.1126/science.130.3373.452Google Scholar

  • [10] Brouwers E.V.M., Ebert R. & Beetsma J. 1987. Behavioural and physiological aspects of nurse bees in relation to the composition of larval food during caste differentiation in the honeybee. J. Apic. Res. 26(1): 11–23. Google Scholar

  • [11] Bulet P., Hetru C., Dimarcq J.L. & Hoffmann D. 1999. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23(4–5): 329–344. PMID: 10426426 http://dx.doi.org/10.1016/S0145-305X(99)00015-4Google Scholar

  • [12] Bulet P. & Stöcklin R. 2005. Insect antimicrobial peptides: structures, properties and gene regulation. Prot. Pept. Lett. 12(1): 3–11. DOI: http://dx.doi.org/10.2174/0929866053406011 http://dx.doi.org/10.2174/0929866053406011CrossrefGoogle Scholar

  • [13] Casteels-Josson K., Zhang W., Capaci T., Casteels P. & Tempst P. 1994. Acute transcriptional response of the honeybee peptide-antibiotics gene repertoire and required posttranslational conversion of the precursor structures. J. Biol. Chem. 269(46): 28569–28575. PMID: 7961803 Google Scholar

  • [14] Casteels P. 1998. Immune response in Hymenoptera, pp. 92–110. In: Brey P.T. & Hultmark D. (eds), Molecular Mechanisms of Immune Responses in Insect, Chapman & Hall, London. 340 pp. ISBN-10: 0412712806 Google Scholar

  • [15] Chomczynsky P. & Sacchi N. 1987. Single-step RNA isolation from cultured cells or tissues. Anal. Biochem. 162(1): 156–159. DOI: 10.1016/0003-2697(87)90021-2 CrossrefGoogle Scholar

  • [16] Cociancich S., Ghazi A., Hetru C. & Hoffmann J.A. & Letellier L. 1993. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268(26): 19239–19245. PMID: 7690029 Google Scholar

  • [17] Cremer S., Armitage S. & Schmid-Hempel P. 2007. Social immunity. Curr. Biol. 17(16): R693–R702. DOI: 10.1016/j.cub. 2007.06.008 http://dx.doi.org/10.1016/j.cub.2007.06.008CrossrefGoogle Scholar

  • [18] Evans J.D. 2003. Diverse origins of tetracycline resistance in the honey bee bacterial pathogen Paenibacillus larvae. J. Invertebr. Pathol. 83(1): 46–50. DOI: 10.1016/S0022-2011(03)00039-9 http://dx.doi.org/10.1016/S0022-2011(03)00039-9CrossrefGoogle Scholar

  • [19] Evans J.D. 2004. Transcriptional immune responses by honey bee larvae during invasion by the bacterial pathogen, Paenibacillus larvae. J. Invertebr. Pathol. 85(2): 105–111. DOI: 10.1016/j.jip.2004.02.004 http://dx.doi.org/10.1016/j.jip.2004.02.004CrossrefGoogle Scholar

  • [20] Evans J.D., Aronstein K., Chen Y.P., Hetru C., Imler J.L. Jiang H., Kanost M., Thompson G.J., Zou Z. & Hultmark, D. 2006. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15(5): 645–656. DOI: 10.1111/j.1365-2583.2006.00682.x http://dx.doi.org/10.1111/j.1365-2583.2006.00682.xCrossrefGoogle Scholar

  • [21] Evans J.D. & Pettis J.S. 2005. Colony-level impacts of immune responsiveness in honeybees Apis mellifera. Evolution 59(10): 2270–2274. DOI: 10.1554/05-060.1 CrossrefGoogle Scholar

  • [22] Evans J.D. & Spivak M. 2010. Socialized Medicine: Individual and communal disease barriers in honey bees. J. Invertebr. Pathol. 103(Suppl.): S62–S72. DOI: 10.1016/j.jip.2009.06.019 http://dx.doi.org/10.1016/j.jip.2009.06.019CrossrefGoogle Scholar

  • [23] Feng M., Fang Y. & Li J. 2009. Proteomic analysis of honeybee worker (Apis mellifera) hypopharyngeal gland development. BMC Genomics 10(1): 645. DOI: 10.1186/1471-2164-10-645 http://dx.doi.org/10.1186/1471-2164-10-645CrossrefGoogle Scholar

  • [24] Fontana R., Mendes M.A., de Souza B.M., Konno K., César L.M.M., Malaspina O. & Palma M.S. 2004. Jelleines: a family of antibacterial peptides from the royal jelly of honeybees (Apis mellifera). Peptides 25(6): 919–928. DOI: 10.1016/j.peptides.2004.03.016 http://dx.doi.org/10.1016/j.peptides.2004.03.016CrossrefGoogle Scholar

  • [25] Forsgren E., Olofsson T.C., Vásquez A. & Fries I. 2010. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41(1): 99–108. DOI: 10.1051/apido/2009065 http://dx.doi.org/10.1051/apido/2009065CrossrefGoogle Scholar

  • [26] Fries I. & Camazine S. 2001. Implication of horizontal and vertical pathogen transmission for honeybee epidemiology. Apidologie 32(3): 199–214. DOI: 10.1051/apido:2001122 http://dx.doi.org/10.1051/apido:2001122CrossrefGoogle Scholar

  • [27] Fujiwara S., Imai J., Fujiwara M., Yaeshima T., Kawashima T. & Kobayashi K. 1990. A potent antibacterial protein in royal jelly. J. Biol. Chem. 265(19): 11333–11337. PMID: 2358464 Google Scholar

  • [28] Gao B. & Zhu S. 2010. Identification and characterization of the parasitic wasp Nasonia defensins: Positive selection targeting the functional region? Dev. Comp. Immunol. 34(6): 659–668. DOI: 10.1016/j.dci.2010.01.012 http://dx.doi.org/10.1016/j.dci.2010.01.012CrossrefGoogle Scholar

  • [29] Genersch E., Ashiralieva A. & Fries I. 2005. Strain- and genotypespecific differences in virulence of Paenibacillus larvae subsp. larvae, the causative agent American foulbrood disease in honey bees. Appl. Environ. Microbiol. 71(11): 7551–7555. DOI: 10.1128/AEM.71.11.7551-7555.2005 CrossrefGoogle Scholar

  • [30] Genersch E., Forsgren E., Pentikäinen J., Ashiralieva A., Rauch S., Kilwinski J. & Fries I. 2006. Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int. J. Syst. Evol. Microbiol. 56(3): 501–511. DOI: 10.1099/ijs.0.63928-0 http://dx.doi.org/10.1099/ijs.0.63928-0CrossrefGoogle Scholar

  • [31] Genersch E. 2010. American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol. 103(Suppl.): S10–S19. DOI: 10.1016/j.jip.2009.06.015 http://dx.doi.org/10.1016/j.jip.2009.06.015CrossrefGoogle Scholar

  • [32] Hansen H. & Brødsgaard C. J. 1999. American foulbrood: a review of its biology, diagnosis and control. Bee World 80(1): 5–23. CrossrefGoogle Scholar

  • [33] Hornitzky M.A.Z. 1998. The pathogenicity of Paenibacillus larvae subsp. larvae spores and vegetative cells to honey bee (Apis mellifera) colonies and their susceptibility to royal jelly. J. Apic. Res. 37(4): 267–271. Google Scholar

  • [34] Jung-Hoffmann I. 1966. Die Determination von Königin und Arbeiterin der Honigbiene. Z. Bienenforsch. 8: 296–322. Google Scholar

  • [35] Klaudiny J., Albert Š., Bachanová K., Kopernicky J. & Šimúth J. 2005. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem. Mol. Biol. 35(1): 11–22. DOI: 10.1016/j.ibmb.2004.09.007 http://dx.doi.org/10.1016/j.ibmb.2004.09.007CrossrefPubMedGoogle Scholar

  • [36] Klaudiny J., Hanes J., Kulifajová J., Albert Š. & Šimúth J. 1994a. Molecular cloning of two cDNAs from the head of the nurse honey bee (Apis mellifera L.) coding for related proteins of royal jelly. J. Apic. Res. 33(2): 105–111. Google Scholar

  • [37] Klaudiny J., Kulifajová J., Crailsheim K. & Šimúth J. 1994b. New approach to the studying of labor division in honey bee colony. Apidologie 25(6): 596–600. DOI: 10.1051/apido:19940610 http://dx.doi.org/10.1051/apido:19940610CrossrefGoogle Scholar

  • [38] Knecht H. & H., Kaatz D. 1990. Patterns of larval food production by hypopharyngeal glands in adult worker honey bees. Apidologie 21(5): 457–468. DOI: 10.1051/apido:19900507 http://dx.doi.org/10.1051/apido:19900507CrossrefGoogle Scholar

  • [39] Kubo T., Sasaki M., Nakamura J., Sasagawa H., Ohashi K., Takeuchi H. & Natori S. 1996. Change in the expression of hypopharyngeal-gland proteins of the worker honeybees (Apis mellifera L.) with the age and /or role. J. Biochem. 119(2): 291–295. PMID: 8882720 Google Scholar

  • [40] Lee K.H., Hong S.Y., Oh J.E., Kwon M., Yoon J.H., Lee J. Lee B.L. & Moon H.M. 1998. Identification and characterization of the antimicrobial peptide corresponding to C-terminal beta-sheet domain of tenecin 1, an antimicrobial protein of larvae of Tenebrio molitor. Biochem. J. 334(Pt 1, Is 3): 99–105. DOI: 10.1002/(SICI)1097-0029(19990501)45:3〈154::AID-JEMT3〉3.0.CO;2-5 CrossrefGoogle Scholar

  • [41] Lensky Y. & Rakover Y. 1983. Separate protein body compartments of the worker honeybee (Apis mellifera L.). Comp. Biochem. Physiol. 75B(4): 607–615. DOI: 10.1016/0305-0491(83)90104-9 CrossrefGoogle Scholar

  • [42] Lindström A., Korpela S. & Fries I. 2008. The distribution of Paenibacillus larvae spores in adult bees and honey and larval mortality, following the addition of American foulbrood diseased brood or spore-contaminated honey in honey bee (Apis mellifera) colonies. J. Invertebr. Pathol. 99(1): 82–86. DOI: 10.1016/j.jip.2008.06.010 http://dx.doi.org/10.1016/j.jip.2008.06.010CrossrefGoogle Scholar

  • [43] Lodesani M. & Costa M. 2005. Limits of chemotherapy in beekeeping: development of resistance and the problem of residues. Bee World 86(4): 102–109. CrossrefGoogle Scholar

  • [44] Masterman R., Ross R., Mesce K. & Spivak, M. 2001. Olfactory and behavioral response thresholds to odors of diseased brood differ between hygienic and non-hygienic honeybees (Apis mellifera L.). J. Comp. Physiol. A 187(6): 441–452. DOI: 10.1007/s003590100216 http://dx.doi.org/10.1007/s003590100216CrossrefGoogle Scholar

  • [45] Melliou E. & Chinou I. 2005. Chemistry and bioactivity of royal jelly from Greece. J. Agric. Food Chem. 53(23): 8987–8992. DOI: 10.1021/jf051550p http://dx.doi.org/10.1021/jf051550pCrossrefGoogle Scholar

  • [46] Miyagi T., Peng C.Y.S., Chuang R.Y., Mussen E.C., Spivak M.S. & Doi R.H. 2000. Verification of oxytetracycline-susceptible and -resistant Paenibacillus larvae in United States. J. Invertebr. Pathol. 75(1): 95–96. DOI: 10.1006/jipa.1999.4888 http://dx.doi.org/10.1006/jipa.1999.4888CrossrefGoogle Scholar

  • [47] Ohashi, K., Natori S. & Kubo T. 1997. Change in the mode of gene expression of the hypopharyngeal gland cells with agedependent role change of the worker honeybee Apis mellifera L. Eur. J. Biochem. 249(3): 797–802. DOI: 10.1111/j.1432-1033.1997.t01-1-00797.x http://dx.doi.org/10.1111/j.1432-1033.1997.t01-1-00797.xCrossrefGoogle Scholar

  • [48] Otvos L., Jr. 2000. Antibacterial peptides isolated from insects. J. Pept. Sci. 6(10): 497–511. PMID: 11071264 http://dx.doi.org/10.1002/1099-1387(200010)6:10<497::AID-PSC277>3.0.CO;2-WGoogle Scholar

  • [49] Pérez-Sato J.A., Châlin N., Martin S.J., Hughes W.O.H. & Ratnieks F.L.W. 2009. Multi-level selection for hygienic behaviour in honeybee. Heredity 102(6): 609–615. DOI: 10.1038/hdy.2009.20 http://dx.doi.org/10.1038/hdy.2009.20CrossrefGoogle Scholar

  • [50] Randolt K., Gimple O., Geissendörfer J, Reinders J., Prusko C., Mueller M.J., Albert S., Tautz J. & Hildburg B. 2008. Immune-related proteins induced in the hemolymph after aseptic and septic injury differs in honey bee worker larvae and adults. Arch. Insect Biochem. Physiol. 69: 155–167. DOI: 10.1002/arch.20269 http://dx.doi.org/10.1002/arch.20269CrossrefGoogle Scholar

  • [51] Ratnieks F.L.W. 1992. American foulbrood: the spread and control of an important disease of the honey bee. Bee World 73(3): 177–191. CrossrefGoogle Scholar

  • [52] Rauch S., Ashiralieva A., Hedtke K. & Genersch E. 2009. Negative correlation between individual-insect-level virulence and colony-level virulence of Paenibacillus larvae, the ethiological agent of American foulbrood of honeybees. Appl. Environ. Microbiol. 75(10): 3344–3347. DOI: 10.1128/AEM.02839-08 http://dx.doi.org/10.1128/AEM.02839-08CrossrefGoogle Scholar

  • [53] Rembold H. 1987. Die Kastenbildung bei der Honigbiene, Apis mellifica L., aus biochemischer Sicht, pp. 350–403. In: Schmidt G.H. (ed.), Sozialpolymorphismus bei Insekten. Probleme der Kastenbildung im Tierreich. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 974 pp. ISBN: 38047094 27 9783804709423 Google Scholar

  • [54] Rinderer T.E., Rothenbuhler W.C. & Gochnauer T.A. 1974. The influence of pollen on the susceptibility of honey bee-larvae to Bacillus larvae. J. Invertebr. Pathol. 23(3): 347–350. DOI: 10.1016/0022-2011(74)90100-1 http://dx.doi.org/10.1016/0022-2011(74)90100-1CrossrefGoogle Scholar

  • [55] Rose R.I. & Briggs J.D. 1969. Resistance to American foulbrood in honey bees. IX. Effects of honey-bee larval food on the growth and viability of Bacillus larvae. J. Invertebr. Pathol. 13(1): 74–80. DOI: 10.1016/0022-2011(69)90240-7 http://dx.doi.org/10.1016/0022-2011(69)90240-7CrossrefGoogle Scholar

  • [56] Rothenbuhler W.C. & Thompson V.C. 1956. Resistance to American foulbrood in honey bees. I. Differential survival of larvae of different genetic lines. J. Econ. Entomol. 49: 470–475. CrossrefGoogle Scholar

  • [57] Schägger H. & von Jagow G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166(2): 368–379. DOI: 10.1016/0003-2697(87)90587-2 http://dx.doi.org/10.1016/0003-2697(87)90587-2Google Scholar

  • [58] Schmitzová J., Klaudiny J., Albert Š., Schröder W., Schreckengost W., Hanes J., Júdová J. & Šimúth J. 1998. A family of major royal jelly proteins of the honeybee (Apis mellifera L.). Cell. Mol. Life Sci. 54(9): 1020–1030. PMID: 9791542 http://dx.doi.org/10.1007/s000180050229Google Scholar

  • [59] Sedmak J.J. & Grossberg S.E. 1977. A rapid, sensitive, and versatile assy for protein using Coomassie Brilliant Blue G250. Anal. Biochem. 79(2): 544–552. DOI: 10.1016/0003-2697(77)90428-6 http://dx.doi.org/10.1016/0003-2697(77)90428-6Google Scholar

  • [60] Shimanuki H., Knox D.A., Furgala B., Caron D.M. & Williams J.L. 1992. Diseases and pests of honey bees, pp. 1083–1154. In: Graham J.M. (ed.), The Hive and the Honey Bee, Dadant & Sons, Hamilton, Illinois, 1324 pp. ISBN: 0915698099 Google Scholar

  • [61] Spivak M. & Gilliam M. 1998a. Hygienic behaviour of honey bees and its application for control of brood diseases and varroa. Part I. Hygienic behavior and resistance to American foulbrood. Bee World 79(3): 124–134. CrossrefGoogle Scholar

  • [62] Spivak M. & Gilliam M. 1998b. Hygienic behaviour of honey bees and its application for control of brood diseases and varroa. Part II. Studies on hygienic behaviour since the Rothenbuhler era. Bee World 79(4): 169–186. CrossrefGoogle Scholar

  • [63] Spivak M. & Reuter G.D. 2001. Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie 32(6): 555–565. DOI: 10.1051/apido:2001103 http://dx.doi.org/10.1051/apido:2001103CrossrefGoogle Scholar

  • [64] Stoscheck C.M. 1990. Quantitation of protein, pp. 50–67. In: Deutscher M.P. (ed.), Methods in Enzymology, Vol. 182, Guide to Protein Purification, Academic Press, Inc., 894 pp. ISBN: 0122135857, 978-0122135859 Google Scholar

  • [65] Sturtevant A.P. & Revell I.L. 1953. Reduction of Bacilus larvae spores in liquid food of honeybees by action of the honey stopper, and its relation to the development of American foulbrood. J. Econ. Entomol. 46(5): 855–860. CrossrefGoogle Scholar

  • [66] Takenaka T. & Echigo T. 1983. Proteins and peptides in royal jelly, Nippon Nogeikagaku Kaishi 57: 1203–1209. http://dx.doi.org/10.1271/nogeikagaku1924.57.1203CrossrefGoogle Scholar

  • [67] Tomoda T., Matsuyama J. & Matsuka M. 1977. Studies on protein in royal jelly. 2: Fractionation on water soluble protein on DEAE-cellulose chromatography, gel filtration and disc electrophoresis. J. Apic. Res. 16: 125–130. Google Scholar

  • [68] Wedenig M., Riessberger-Galle U. & Crailsheim K. 2003. A substance in honey bee larvae inhibits the growth of Paenibacillus larvae larvae larvae. Apidologie 34(1): 43–51. DOI: 10.1051/apido:2002043 http://dx.doi.org/10.1051/apido:2002043CrossrefGoogle Scholar

  • [69] Williams D.L. 2000. A veterinary approach to the European honey bee (Apis mellifera). Vet. J. 160(1): 61–73. DOI: 10.1053/tvjl.2000.0474 http://dx.doi.org/10.1053/tvjl.2000.0474CrossrefGoogle Scholar

  • [70] Wilson-Rich N., Dres S.T. & Starks P.T. 2008. The ontogeny of immunity: Development of innate immune strength in the honeybee (Apis mellifera). J. Insect Physiol., 54(10–11): 1392–1399. DOI: 10.1016/j.jinsphys.2008.07.016 PMID:18761014 http://dx.doi.org/10.1016/j.jinsphys.2008.07.016CrossrefGoogle Scholar

  • [71] Wilson-Rich N., Spivak M., Fefferman N.H. & Starks P.T. 2009. Genetic, individual, and group facilitation of disease resistance in insect societies. Ann. Rev. Entomol. 54: 405–423. DOI: 10.1146/annurev.ento.53.103106.093301 http://dx.doi.org/10.1146/annurev.ento.53.103106.093301CrossrefGoogle Scholar

  • [72] Wong J.H., Xia L. & Ng T. B. 2007. A Review of defensins of diverse origins. Curr. Prot. Pept. Sci. 8(5): 446–459. PMID: 17979760 http://dx.doi.org/10.2174/138920307782411446Google Scholar

  • [73] Woodrow A.W. & Holst E.C. 1942. The mechanism of colony resistance to American foulbrood. J. Econ. Entomol. 35(3): 327–330. CrossrefGoogle Scholar

  • [74] Yamada K. & Natori S. 1994. Characterization of the antimicrobial peptide derived from sapecin B, an antimicrobial protein of Sarcophaga peregrina (flesh fly). Biochem. J. 298(Pt.3): 623–628. PMID: 1137905 Google Scholar

  • [75] Yatsunami K. & Echigo T. 1985. Antibacterial action of royal jelly. Bull. Fac. Agric. Tamagawa Univ. 25: 13–22. Google Scholar

About the article

Published Online: 2012-01-10

Published in Print: 2012-02-01


Citation Information: Biologia, Volume 67, Issue 1, Pages 200–211, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-011-0153-8.

Export Citation

© 2011 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Marcela Bucekova, Martin Sojka, Ivana Valachova, Simona Martinotti, Elia Ranzato, Zoltan Szep, Viktor Majtan, Jaroslav Klaudiny, and Juraj Majtan
Scientific Reports, 2017, Volume 7, Number 1
[2]
Margarita M. López-Uribe, Andrea Fitzgerald, and Michael Simone-Finstrom
Royal Society Open Science, 2017, Volume 4, Number 5, Page 170224
[3]
Juraj Majtan, Marcela Bucekova, Ivana Valachova, and Martin Sojka
Journal of Medical Microbiology, 2016, Volume 65, Number 4, Page 337
[4]
Rachel L. Vannette, Abbas Mohamed, and Brian R. Johnson
Scientific Reports, 2015, Volume 5, Number 1
[5]
Oliver Otti, Simon Tragust, and Heike Feldhaar
Trends in Ecology & Evolution, 2014, Volume 29, Number 11, Page 625
[6]
Li-Rong Shen, Shatar Dilireba, Wen-Xiu Zhou, Yi-Ran Wang, Mei-Lu Li, and Liang Zhai
Journal of Agricultural and Food Chemistry, 2014, Volume 62, Number 38, Page 9305
[7]
Marcela Bucekova, Ivana Valachova, Lenka Kohutova, Emanuel Prochazka, Jaroslav Klaudiny, and Juraj Majtan
Naturwissenschaften, 2014, Volume 101, Number 8, Page 661
[8]
Juraj Majtan
Wound Repair and Regeneration, 2014, Volume 22, Number 2, Page 187
[9]
Lenka Kohútová, Jaroslav Klaudiny, Róbert Nádašdy, Mária Šedivá, Ján Kopernický, and Juraj Majtán
Biologia, 2013, Volume 68, Number 6
[10]
Juraj Majtan, Jaroslav Klaudiny, Jana Bohova, Lenka Kohutova, Maria Dzurova, Maria Sediva, Maria Bartosova, and Viktor Majtan
Fitoterapia, 2012, Volume 83, Number 4, Page 671

Comments (0)

Please log in or register to comment.
Log in