Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year


IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 67, Issue 3 (Jun 2012)

Issues

Analysis of movement in primary maize roots

Liyana Popova
  • Center for Micro-Biorobotics@SSSA, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Italy
  • The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale R. Piaggio 34, 56025, Pontedera, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrea Russino / Antonio Ascrizzi
  • Center for Micro-Biorobotics@SSSA, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Italy
  • The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale R. Piaggio 34, 56025, Pontedera, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbara Mazzolai
  • Center for Micro-Biorobotics@SSSA, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-04-18 | DOI: https://doi.org/10.2478/s11756-012-0023-z

Abstract

Studying plant root kinematics is important for understanding certain aspects of root growth and movement, which are strictly correlated in plants. However, there is little available data on autonomous movements in plant roots, such as nutations, and the data that are available are poorly described. We investigated the autonomous movements during growth in primary maize roots by estimating the main kinematic parameters of nutations (i.e., the period of duration and amplitude) and the growth rate. The estimations of nutation parameters were performed by developing dedicated methods, which are based on the analysis of root tip displacement and tip velocity. The data relative to the tip displacements were obtained using tip tracing software developed by our team specifically for this purpose. The results confirmed that the nutational phenomenon covers the continuous range of periods and amplitudes, with certain dominant period-amplitude types, which we clustered into three groups: i) amplitudes less than 0.1 mm and 4–16 min periods, ii) amplitudes less than 0.1 mm and 20–120 min periods, and iii) amplitudes greater than 0.1 mm and 24–120 min periods.

Keywords: maize; primary root; movement; nutation; tracking software

  • [1] Baluška F., Mancuso S., Volkmann D. & Barlow P.W. 2009. The ‘root-brain’ hypothesis of Charles and Francis Darwin. Plant Sig. Behav. 4: 1121–1127. http://dx.doi.org/10.4161/psb.4.12.10574CrossrefGoogle Scholar

  • [2] Brown A.H. 1993. Circumnutations:from Darwin to space flights. Plant. Physiol. 101: 345–348. Google Scholar

  • [3] Eapen D., Barroso M.L., Ponce G., Campos M.E. & Cassab G.I. 2005. Hydrotropism: root growth responses to water. Trends Plant Sci. 10: 44–50. http://dx.doi.org/10.1016/j.tplants.2004.11.004CrossrefGoogle Scholar

  • [4] Gilroy S., Monshausen G.B. & Swanson S.J. 2008. Chapter 5. Touch Sensing and Thigmotropism, pp. 91–122. In: Gilroy S. & Masson P.H. (eds), Plant Tropisms, Blackwell Publishing Ltd, Oxford, UK. Google Scholar

  • [5] Hayashi Y., Nishiyama H., Tanoi K., Ohya T., Nihey N., Tanioka K. & Nakanishi T.M. 2004. An alluminium influence on root circumnutation in dark revealed by a new super-HARP (highgain avalanche rushing amorphous photoconductor) camera. Plant. Cell Physiol. 45: 351–356. http://dx.doi.org/10.1093/pcp/pch042CrossrefGoogle Scholar

  • [6] Hirota H. 1976. Rotation growth of root tips in Zea mays and Lolium multiflorum. J. Jap. Sci.Grassl. Set. 22: 156–160. Google Scholar

  • [7] Inoue N., Arase T., Hagiwara M., Amano T., Hayashi T. & Ikeda R. 1999. Ecological significance of root tip rotation for seedling establishment of Oryza sativa L. Ecol. Res. 14: 31–38. http://dx.doi.org/10.1046/j.1440-1703.1999.141282.xCrossrefGoogle Scholar

  • [8] Ishikawa H. & Evans M.L. 1992. Induction of curvature in maize roots by calcium or by thigmostimulation. Role of the postmitotic isodiametric growth zone. Plant. Physiol. 100: 762–768. http://dx.doi.org/10.1104/pp.100.2.762CrossrefGoogle Scholar

  • [9] Migliaccio F., Fortunati A. & Tassone P. 2009. Arabidopsis root growth movements and their symmetry: Progress and problems arising from recent work. Plant Sig. Behav. 4: 183–190. http://dx.doi.org/10.4161/psb.4.3.7959CrossrefGoogle Scholar

  • [10] Russino A., Ascrizzi A. & Mazzolai B. 2011. A novel imageanalysis tool for study of root tip movements. Proceedings of 7th International Symposium on Structure and Function of Roots. Novy Smokovec, Slovakia, pp. 148–149. Google Scholar

  • [11] Shabala S.N. & Newman I.A. 1997. Proton and calcium flux oscillations in the elongation region correlate with root nutation. Plant.Physiol. 100: 917–926. http://dx.doi.org/10.1111/j.1399-3054.1997.tb00018.xCrossrefGoogle Scholar

  • [12] Shabala S. 2003. Physiological implications of ultradian oscillations in plant roots. Plant Soil 255: 217–226. http://dx.doi.org/10.1023/A:1026198927712CrossrefGoogle Scholar

  • [13] Trewavas A. 2002. Mindless mastery. Nature 415: 841 http://dx.doi.org/10.1038/415841aCrossrefGoogle Scholar

  • [14] Trewavas A. 2005. Plant intelligence. Naturwissenschaften 92: 401–413 http://dx.doi.org/10.1007/s00114-005-0014-9CrossrefGoogle Scholar

  • [15] Vollsnes A. V., Futsaether C.M. & Bengough A.G. 2010. Quantifying rhizosphere particle movement around mutant maize roots using time-lapse imaging and particle image velocimetry. Soil Sci. 61: 926–939. http://dx.doi.org/10.1111/j.1365-2389.2010.01297.xWeb of ScienceCrossrefGoogle Scholar

  • [16] Walter A., Feil R. & Schurr U. 2003. Expansion dynamics, metabolite composition and substance transfer of the primary root growth of Zea mays L. growth in different external nutrient availabilities. Plant. Cell. Environ. 26: 1451–1466. http://dx.doi.org/10.1046/j.0016-8025.2003.01068.xCrossrefGoogle Scholar

  • [17] Yazdanbakhsh N. & Fisahn J. 2010. Analysis of Arabidopsis thaliana root growth kinetics with high temporal and spatial resolution. Ann. Bot. 105: 783–791. http://dx.doi.org/10.1093/aob/mcq048CrossrefGoogle Scholar

About the article

Published Online: 2012-04-18

Published in Print: 2012-06-01


Citation Information: Biologia, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-012-0023-z.

Export Citation

© 2012 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hye-jeong Kim, Akie Kobayashi, Nobuharu Fujii, Yutaka Miyazawa, and Hideyuki Takahashi
Physiologia Plantarum, 2016, Volume 157, Number 1, Page 108
[2]
A Russino, A Ascrizzi, L Popova, A Tonazzini, S Mancuso, and B Mazzolai
Bioinspiration & Biomimetics, 2013, Volume 8, Number 2, Page 025004
[3]
E Sinibaldi, G L Puleo, F Mattioli, V Mattoli, F Di Michele, L Beccai, F Tramacere, S Mancuso, and B Mazzolai
Bioinspiration & Biomimetics, 2013, Volume 8, Number 2, Page 025002

Comments (0)

Please log in or register to comment.
Log in