Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 67, Issue 3


Arsenic induced oxidative stress in plants

Iti Sharma
Published Online: 2012-04-18 | DOI: https://doi.org/10.2478/s11756-012-0024-y


Arsenic is a highly toxic metalloid for all forms of life including plants. Arsenic enters in the plants through phosphate transporters as a phosphate analogue or through aquaglycoporins. Uptake of arsenic in plant tissues adversely affects the plant metabolism and leads to various physiological and structural disorders. Photosynthetic apparatus, cell division machinery, energy production, and redox status are the major section of plant system that are badly affected by As (V). Similarly As (III) can react with thiol (-SH) groups of enzymes and inhibits various metabolic processes. Arsenic is also known to induce oxidative stress directly by generating reactive oxygen species (ROS) during conversion of its valence forms or indirectly by inactivating antioxidant molecules through binding with their -SH groups. As-mediated oxidative stress causes cellular, molecular and physiological disturbances in various plant species. Activation of enzymatic antioxidants namely, superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR), Glutathione s-transferase, glutathione peroxidase (GPX) as well as non antioxidant compounds such as, ascorbate, glutathione, carotenoids are reported to neutralize arsenic mediated oxidative stress. Understanding of biochemistry of arsenic toxicity would be beneficial for the development of arsenic tolerant crops and other economically important plants.

Keywords: antioxidants; oxidative stress; photosynthesis; physiological disturbances

  • [1] Abercrombie J.M., Halfhill M.D., Ranjan P., Rao M.R., Saxton A.M., Yuan J.S. & Stewartjr C.N. 2008. Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol. 8: 87. http://dx.doi.org/10.1186/1471-2229-8-87CrossrefGoogle Scholar

  • [2] Adriano D.C. 1986. Trace element in the terrestrial environment. Springer-Verlag, New York. Google Scholar

  • [3] Benton, M.A., Rager J.E., Smeester L. & Fry R.C. 2011. Comparative genomic analyses identify common molecular pathways modulated upon exposure to low doses of arsenic and cadmium. BMC Genomics 12: 173 http://dx.doi.org/10.1186/1471-2164-12-173CrossrefGoogle Scholar

  • [4] Briat J.F. 2002. Metal ion-activated oxidative stress and its control, pp. 171–189. In: Inze D. & Montagu M.V. (eds), Oxidative stress in plants, Taylor & Francis, New York. Google Scholar

  • [5] Cao X., Ma L.Q. & Tu C. 2004. Antioxidant responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ. Pollut. 128: 317–325. http://dx.doi.org/10.1016/j.envpol.2003.09.018CrossrefGoogle Scholar

  • [6] Chakrabarty D., Trivedi P.K., Misra P., Tiwari M., Shri M., Shukla D., Kumar S., Rai A., Pandey A., Nigam D., Tripathi R.D. & Tuli R. 2009. Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74: 688–702. http://dx.doi.org/10.1016/j.chemosphere.2008.09.082CrossrefGoogle Scholar

  • [7] Collins A. 2001. Carotenoids and genomic stability. Mutat. Res. 475: 1–28. http://dx.doi.org/10.1016/S0027-5107(01)00069-0CrossrefGoogle Scholar

  • [8] Cullen W.R. & Hettipathirana D.I. 1994. Application of whole cell NMR techniques to study the interaction of arsenic compounds with Catharanthus roseus cell suspension culture. Appl. Organometallic Chem. 8: 463–471. http://dx.doi.org/10.1002/aoc.590080506CrossrefGoogle Scholar

  • [9] Czech V., Czövek P., Fodor J., Bóka K. Fodor F. & Cseh E. 2008. Investigation of arsenate phytotoxicity in cucumber plants Acta Biol Szeged. 52: 79–80. Google Scholar

  • [10] Dixon D.P., Lapthorn A., Madesis P., Mudd E.A., Day A. & Edwards R. 2008. Binding and glutathione conjugation of porphyrinogens by plant glutathione transferases. J. Biol. Chem. 283: 20268–20276. http://dx.doi.org/10.1074/jbc.M802026200CrossrefGoogle Scholar

  • [11] Duana G-L., Hu Y., Liu Wen-Ju., Kneer R., Zhao F-J. & Zhu YG. 2011. Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Exp. Bot. 71: 416–421. Google Scholar

  • [12] Ellis D. R., Gumaelius L., Indriolo, E., Pickring I.J., Banks J.A. & Salt D.E. 2006. A novel arsenate reductase from the arsenic hyperaccumulating Pteris vittata. Plant Physiol. 141: 1544–1554. http://dx.doi.org/10.1104/pp.106.084079CrossrefGoogle Scholar

  • [13] Faria D., Wanda C., Mucciarelli M. & Fusconi A. 2010. Arsenate toxicity on the apices of Pisum sativum L. seedling root: effect on mitotic activity, chromatin integrity and microtubules. Environ. Exp. Bot. 691: 17–23. Google Scholar

  • [14] Fridovich I. 1995. Superoxide radical and superoxide dismutase. Ann Rev. Biochem. 64: 97–112. http://dx.doi.org/10.1146/annurev.bi.64.070195.000525CrossrefGoogle Scholar

  • [15] Ghelfi A., Gaziola S.A., Cia M.C., Chabregas S.M., Falco M.C., Kuser-Falcǎo P.R. & Azevedo R.A. 2011. Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum. Ann. Appl. Biol. 159: 267–280. http://dx.doi.org/10.1111/j.1744-7348.2011.00491.xCrossrefGoogle Scholar

  • [16] Gomes-Junior R.A., Gratao P.L., Gaziola S.A., Mazzafera P., Lea P.J. & Azevedo R.A. 2007. Selenium-induced oxidative stress in coffee cell suspension cultures. Funct Plant Biol 34: 449–456. http://dx.doi.org/10.1071/FP07010CrossrefGoogle Scholar

  • [17] Gomes-Junior R.A., Moldes C.A., Gratao P.L., Gaziola S.A., Mazzafera P., Lea P.J. & Azevedo R.A. 2006. Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiol. Biochem. 44: 420–429. http://dx.doi.org/10.1016/j.plaphy.2006.06.002CrossrefGoogle Scholar

  • [18] Gratão P.L., Polle A. Lea P.J. & Azevedo R.A. 2005. Making the life of heavy metal-stressed plants a little easier. Funct. Plant Biol. 32: 481–494. http://dx.doi.org/10.1071/FP05016CrossrefGoogle Scholar

  • [19] Hartley-Whitaker J., Ainsworth G. & Meharg A. 2001. Copperand-arsenic induced oxidative stress in Holcus lanatus L. Cloned with differential sensitivity. Plant Cell Environ. 24: 713–722. http://dx.doi.org/10.1046/j.0016-8025.2001.00721.xCrossrefGoogle Scholar

  • [20] Huang C., Qingdong K., Costa M. & Shi X. 2004. Molecular mechanisms of arsenic carcinogenesis. Mol. Cell. Biochem. 255: 57–66. http://dx.doi.org/10.1023/B:MCBI.0000007261.04684.78CrossrefGoogle Scholar

  • [21] Jocelyn P.C. 1972. Biochemistry of the SH Group: the Occurrence, Chemical Properties, Metabolism and Biological Function of Thiols and Disulphides. Academic Press, London. Google Scholar

  • [22] Koch I., Wang L., Ollson C.A., Cullen W.R. & Reimer K.J. 2000. The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada. Environ. Sci. Technol. 34: 22–26. http://dx.doi.org/10.1021/es9906756CrossrefGoogle Scholar

  • [23] Kunert K.J. & Foyer C.H. 1993. Thiol/disulfide exchange in plants, pp. 139–141. In: De Kok. L.J., Stulen I., Rennenberg H. & Brunold C., Rauser W (eds), Sulpher Nutition and Assimilation in Higher Plants: Regulatory, Agricultural and Environmental Aspects. SPB Academic Publishers, The Hague. Google Scholar

  • [24] Li W.X., Chen T.B., Huang Z.C., Lei M. & Liao X.Y. 2006. Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere 62: 803–809. http://dx.doi.org/10.1016/j.chemosphere.2005.04.055CrossrefGoogle Scholar

  • [25] Liu W.J., Wood B.A., Raab A., McGrath S.P., Zhao F.J. & Feldmann J. 2010. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol. 152: 2211–2221. http://dx.doi.org/10.1104/pp.109.150862CrossrefGoogle Scholar

  • [26] Mascher R., Lippman B., Holiinger S. & Bergmann H. 2002. Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci.163: 961–969. http://dx.doi.org/10.1016/S0168-9452(02)00245-5CrossrefGoogle Scholar

  • [27] Meharg A. 1994. Integrated tolerance mechanisms-constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell Environ. 17: 989–993. http://dx.doi.org/10.1111/j.1365-3040.1994.tb02032.xCrossrefGoogle Scholar

  • [28] Mehlhorn H. 1990. Ethylene-promoted ascorbate peroxidase activity protects plants against hydrogen peroxide, ozone and paraquat. Plant Cell Environ. 13: 971–976. http://dx.doi.org/10.1111/j.1365-3040.1990.tb01988.xCrossrefGoogle Scholar

  • [29] Miteva E. & Peycheva S. 1999. Arsenic accumulation and effect on peroxidase activity in green bean and tomatoes. Bulg. J. Agric. Sci. 5: 737–740. Google Scholar

  • [30] Mokgalaka-Matlala N.S., Flores-Tavizo’n E., Castillo-Michel H. Peralta-Videa J.R. & Gardea-Torresdey J.L. 2009. Arsenic tolerance in mesquite (Prosopis sp.): Low molecular weight thiols synthesis and glutathione activity in response to arsenic. Plant Physiol. Biochem. 47: 822–826. http://dx.doi.org/10.1016/j.plaphy.2009.05.007CrossrefGoogle Scholar

  • [31] Mylona P.V., Polidoros A.N. & Scandalios J.G. 1998. Modulation of antioxidant responses by arsenic in maize. Free Radic. Biol. Med. 25: 576–585. http://dx.doi.org/10.1016/S0891-5849(98)00090-2CrossrefGoogle Scholar

  • [32] Nissen P. & Benson A.A. 1982. Arsenic metabolism in fresh water and terrestrial plants. Physiol. Plantarum 54: 446–450. http://dx.doi.org/10.1111/j.1399-3054.1982.tb00706.xCrossrefGoogle Scholar

  • [33] Noctor G. & Foyer CH. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Ann. Rev. Plant Physiol. 49: 249–279. http://dx.doi.org/10.1146/annurev.arplant.49.1.249CrossrefGoogle Scholar

  • [34] Norton G.J., Lou-Hing D.E., Meharg A.A. & Price A.H. 2008. Rice-arsenate interaction in hydroponics: whole genome transcriptional analysis. J. Exp. Bot. 59: 2267–22761. http://dx.doi.org/10.1093/jxb/ern097CrossrefGoogle Scholar

  • [35] Requejo R. & Tena M. 2005. Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochem. 66: 1519–1528. http://dx.doi.org/10.1016/j.phytochem.2005.05.003CrossrefGoogle Scholar

  • [36] Rosen B. P. 2002. Biochemistry of arsenic detoxification. FEBS Letters 529: 86–92. http://dx.doi.org/10.1016/S0014-5793(02)03186-1CrossrefGoogle Scholar

  • [37] Sharma I., Singh R. & Tripathi B.N. 2007. Biochemistry of Arsenic toxicity and tolerance in plants. Biochem Cell Arch. 7: 165–170. Google Scholar

  • [38] Shi H., Shi X. & Liu KJ. 2004. Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol. Cell. Biochem. 255: 67–78. http://dx.doi.org/10.1023/B:MCBI.0000007262.26044.e8CrossrefGoogle Scholar

  • [39] Shri M., Kumar S., Chakrabarty D., Trivedi P.K., Malick S., Mishra P., Shukla D., Mishra S., Srivastava S., Tripathi R.D. & Tuli R. 2009. Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedling. Ecotoxicol. Environ. Safety 72: 1102–1110 http://dx.doi.org/10.1016/j.ecoenv.2008.09.022CrossrefGoogle Scholar

  • [40] Siefermann-Harms D. 1987. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plantarum 69: 561–568. http://dx.doi.org/10.1111/j.1399-3054.1987.tb09240.xCrossrefGoogle Scholar

  • [41] Simola L.K. 1997. The effect of lead, cadmium, arsenate and fluoride ions on the growth and fine structure of Sphagnum nemoreum in aseptic culture. Can. J. Bot. 90: 375–405. Google Scholar

  • [42] Singh H.P., Batish D.R., Kohali R.K. & Arora K. 2007. Arsenicinduced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul. 53: 65–73. http://dx.doi.org/10.1007/s10725-007-9205-zCrossrefGoogle Scholar

  • [43] Singh N., Ma L.Q, Shrivastava M. & Rathinasapathi B. 2006. Metabolic adaptation to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Sci. 170: 274–282. http://dx.doi.org/10.1016/j.plantsci.2005.08.013CrossrefGoogle Scholar

  • [44] Srivastava S. Mishra S., Trtpathi R.D., Dwivedi S., Trivedi P.K. & Tandon P.K. 2007. Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ. Sci. Technol. 41: 2930–2936. http://dx.doi.org/10.1021/es062167jCrossrefGoogle Scholar

  • [45] Srivastava M., Ma L.Q. & Singh N. 2005. Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J. Exp. Bot. 56:335–1342. http://dx.doi.org/10.1093/jxb/eri134CrossrefGoogle Scholar

  • [46] Stoeva N. & Bineva T. 2003. Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulg. J. Plant Phsiol. 29(1–2): 87–95. Google Scholar

  • [47] Stoeva N., Berova M., Vassilev A. & Zlatev Z. 2005. Effect of exogenous polyamine diethylenetriamine on oxidative changes and photosynthesis in As-treated maize plants (Zea mays L.). J.Cent. Eur. Agric. 6: 367–374. Google Scholar

  • [48] Tamaki S. & Frankenberger W.T. 1992. Environmental biochemistry of arsenic. Rev. Environ. Contam. Toxicol. 124: 79–110. http://dx.doi.org/10.1007/978-1-4612-2864-6_4CrossrefGoogle Scholar

  • [49] Tanaka K., Mitsuhashi H., Kondo N. & Sugahara K. 1982. Further evidence for inactivation of fructose-1,6-bisphosphate at the beginning of SO2 fumigation: increase in fructose-1,6-bisphosphate and decrease in fructose-6-phosphate in SO 2− fumigated spinach leaves. Plant Cell Physiol. 23: 1467–1470. Google Scholar

  • [50] Tangahu B.V., Abdullah S.R.S., Basri H., Idris M., Anuar N., & Mukhlisin M. 2011. A Review on HeavyMetals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Inter. J. Chem. Engin. 939161: 1–31 http://dx.doi.org/10.1155/2011/939161CrossrefGoogle Scholar

  • [51] Tripathi B.N. & Gaur J.P. 2004. Relationship between copperand zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta 219: 397–404. http://dx.doi.org/10.1007/s00425-004-1237-2CrossrefGoogle Scholar

  • [52] Ullrich-Eberius C.I., Sanz A. & Novacky A.J. 1989. Evaluation of arsenate and vanadate associated changes of electrical membrane potential and phosphate transport in Lemna gibba Gl. J. Exp. Bot. 40: 119–128. http://dx.doi.org/10.1093/jxb/40.1.119CrossrefGoogle Scholar

  • [53] Wojas S., Clemens S., Skłodowska A. & Maria Antosiewicz D. 2010. Arsenic response of AtPCS1- and CePCS-expressing plants — Effects of external As(V) concentration on Asaccumulation pattern and NPT metabolism. J. Plant Physiol. 167: 169–175. http://dx.doi.org/10.1016/j.jplph.2009.07.017CrossrefGoogle Scholar

  • [54] Wu C., Ye, Z., Shu W., Zhu Y., & Wong M. 2011. Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes. J. Exp. Bot. 1–10. doi:10.1093/jxb/erq462. CrossrefGoogle Scholar

  • [55] Zaman K. & Pardini R.S. 1996. An overview of the relationship between oxidative stress and mercury and arsenic. Toxic Substance Mechanisms. 15: 151–181. Google Scholar

  • [56] Zhao F.J., Ma J.F., Meharg A.A. & McGrath S.P. 2009. Arsenic uptake and metabolism in plants. New Phytol. 181: 777–794. http://dx.doi.org/10.1111/j.1469-8137.2008.02716.xCrossrefGoogle Scholar

  • [57] Zhao F.J., Mc Garth S.P. & Meharg A.A. 2010. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. ANRV 410: 7.1–7.8. Google Scholar

About the article

Published Online: 2012-04-18

Published in Print: 2012-06-01

Citation Information: Biologia, Volume 67, Issue 3, Pages 447–453, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-012-0024-y.

Export Citation

© 2012 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Adinan Alves da Silva, Juraci Alves de Oliveira, Fernanda Vidal de Campos, Cleberson Ribeiro, Fernanda dos Santos Farnese, and Alan Carlos Costa
Theoretical and Experimental Plant Physiology, 2018
Palin Sil, Prabal Das, and Asok K. Biswas
South African Journal of Botany, 2018, Volume 119, Page 340
Ghulam Abbas, Behzad Murtaza, Irshad Bibi, Muhammad Shahid, Nabeel Niazi, Muhammad Khan, Muhammad Amjad, Munawar Hussain, and Natasha
International Journal of Environmental Research and Public Health, 2018, Volume 15, Number 1, Page 59
Marta Marmiroli, Francesca Mussi, Davide Imperiale, Giacomo Lencioni, and Nelson Marmiroli
Frontiers in Plant Science, 2017, Volume 8
Marta Marmiroli, Francesca Mussi, Davide Imperiale, and Nelson Marmiroli
BMC Plant Biology, 2017, Volume 17, Number 1
Jayeeta Saha, Barsha Majumder, Bushra Mumtaz, and Asok K. Biswas
Acta Physiologiae Plantarum, 2017, Volume 39, Number 12
Anindita Mitra, Soumya Chatterjee, Roxana Moogouei, and Dharmendra Gupta
Agronomy, 2017, Volume 7, Number 4, Page 67
Adinan Alves da Silva, Juraci Alves de Oliveira, Fernanda Vidal de Campos, Cleberson Ribeiro, and Fernanda dos Santos Farnese
Acta Botanica Brasilica, 2017, Number 0
Eliana Bianucci, Andrea Godoy, Ana Furlan, Juan Manuel Peralta, Luis E. Hernández, Ramón O. Carpena-Ruiz, and Stella Castro
Symbiosis, 2017
Zahra Souri, Naser Karimi, and Luisa M. Sandalio
Frontiers in Cell and Developmental Biology, 2017, Volume 5
Mst. Nur-E-Nazmun Nahar, Mohammad Muzahidul Islam, Md. Anamul Hoque, Anna Yonezawa, Md. Yeasin Prodhan, Toshiyuki Nakamura, Yoshimasa Nakamura, Shintaro Munemasa, and Yoshiyuki Murata
Bioscience, Biotechnology, and Biochemistry, 2017, Volume 81, Number 9, Page 1726
Zahida Zia, Hafiz Faiq Bakhat, Zulfiqar Ahmad Saqib, Ghulam Mustafa Shah, Shah Fahad, Muhammad Rizwan Ashraf, Hafiz Mohkum Hammad, Wajid Naseem, and Muhammad Shahid
Ecotoxicology and Environmental Safety, 2017, Volume 144, Page 11
Nilanjan Chakraborty and Krishnendu Acharya
Plant Gene, 2017
Eliana Bianucci, Ana Furlan, María del Carmen Tordable, Luis E. Hernández, Ramón O. Carpena-Ruiz, and Stella Castro
Chemosphere, 2017, Volume 181, Page 551
Suchismita Das, Letuzia M. de Oliveira, Evandro da Silva, and Lena Q. Ma
Chemosphere, 2017, Volume 180, Page 448
Tracy Punshon, Brian P. Jackson, Andrew A. Meharg, Todd Warczack, Kirk Scheckel, and Mary Lou Guerinot
Science of The Total Environment, 2017, Volume 581-582, Page 209
A. Kumari, N. Pandey, and S. Pandey-Rai
Biologia Plantarum, 2017, Volume 61, Number 2, Page 367
Renata Rucińska-Sobkowiak
Acta Physiologiae Plantarum, 2016, Volume 38, Number 11
Varsha Pathare, Sudhakar Srivastava, Balasaheb V. Sonawane, and Penna Suprasanna
Physiology and Molecular Biology of Plants, 2016, Volume 22, Number 4, Page 515
Sudhakar Srivastava and Manoj Shrivastava
International Journal of Phytoremediation, 2017, Volume 19, Number 4, Page 353
Ramkrishna Nirola, Mallavarapu Megharaj, Rupak Aryal, Palanisami Thavamani, Kavitha Ramdass, Binoy Sarkar, and Christopher Saint
Ecological Indicators, 2016, Volume 71, Page 113
Silvia Rita Stazi, Carla Cassaniti, Rosita Marabottini, Francesco Giuffrida, and Cherubino Leonardi
Horticulture, Environment, and Biotechnology, 2016, Volume 57, Number 3, Page 241
Supriya Ghosh, Arun K. Shaw, Ikbal Azahar, Sinchan Adhikari, Samarjit Jana, Sankhajit Roy, Abhishek Kundu, Ang R. Sherpa, and Zahed Hossain
Environmental and Experimental Botany, 2016, Volume 130, Page 53
Fauzia Siddiqui, P. K. Tandon, and Sudhakar Srivastava
Physiology and Molecular Biology of Plants, 2015, Volume 21, Number 3, Page 453
Madhulika Singh, Vijay Pratap Singh, Gunjan Dubey, and Sheo Mohan Prasad
Ecotoxicology and Environmental Safety, 2015, Volume 117, Page 164
Vivek Kumar Singh and Ram Sanmukh Upadhyay
Toxicological & Environmental Chemistry, 2014, Volume 96, Number 9, Page 1374
Ejazul Islam, Muhammad Tahir Khan, and Samra Irem
Ecotoxicology and Environmental Safety, 2015, Volume 114, Page 126
Fernanda S. Farnese, Juraci A. Oliveira, Grasielle S. Gusman, Gabriela A. Leão, Neidiquele M. Silveira, Paulo M. Silva, Cléberson Ribeiro, and José Cambraia
International Journal of Phytoremediation, 2014, Volume 16, Number 2, Page 123
M. Marmiroli, V. Pigoni, M.L. Savo-Sardaro, and N. Marmiroli
Environmental and Experimental Botany, 2014, Volume 99, Page 9
A. Ciurli, L. Lenzi, A. Alpi, and A. Pardossi
International Journal of Phytoremediation, 2014, Volume 16, Number 7-8, Page 804
D.K. Gupta, M. Inouhe, M. Rodríguez-Serrano, M.C. Romero-Puertas, and L.M. Sandalio
Chemosphere, 2013, Volume 90, Number 6, Page 1987
Naser A. Anjum, Iqbal Ahmad, Sónia M. Rodrigues, Bruno Henriques, Nuno Cruz, Cláudia Coelho, Mário Pacheco, Armando C. Duarte, and Eduarda Pereira
Environmental Science and Pollution Research, 2013, Volume 20, Number 1, Page 568

Comments (0)

Please log in or register to comment.
Log in