Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 67, Issue 3

Issues

Systems genetics: challenges and developing strategies

Hong Li
  • Department of Biological Engineering, Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Technology and Business University, Chongqing Nanan Xuefu Avenue 22#, 400067, Chongqing, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ping Zhang
  • Chongqing Technology and Business University, Library, Chongqing Nanan Xuefu Avenue 22#, Chongqing, 400067, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-04-18 | DOI: https://doi.org/10.2478/s11756-012-0026-9

Abstract

Systems genetics is a new discipline based on the transcription mapping, which is also called “genetical genomics”. In recent years, systems genetics has become more practical because of advances in science and technology. Analysis of expression quantitative trait loci (eQTLs) is an emerging technique in which individuals are genotyped across a panel of genetic markers and, simultaneously, phenotyped using DNA microarrays. Depending on eQTL mapping, one can infer the underlying regulatory network responsible for complex diseases or quantitative trait phenotypes. Systems genetics approaches integrate DNA sequence variation, variation in transcript abundance and other molecular phenotypes and variation in organismal phenotypes in a linkage or association mapping population, and allow us to interpret quantitative genetic variation in terms of biologically meaningful causal networks of correlated transcripts. These approaches have been made possible due to the development of massively parallel technologies for quantifying genome-wide levels of transcript abundance. The predictive power of the networks could be enhanced by more systematically integrating protein-protein interactions, protein-DNA interactions, protein-RNA interactions, RNA-RNA interactions, protein state information, methylation state, and interactions with metabolites. Systems genetics research will change the traditional approaches based on reductionism, and allows us to reconsider the living phenomenon and complex disease mechanism. Systems genetics benefits from varied “omics” researches (such as transcriptomics, metabolomics, and phenomics) and the development of bioinformatics tools and mathematical modeling, and will become mature in the near future like many other branches of genetics. Systems genetics is leading researchers to understand genetics systems from holism’s viewpoint, and will open a wide field of vision for genetics researchers in systems biology era.

Keywords: complex trait; eQTL mapping; systems genetics; regulatory network

  • [1] Altshuler d., Daly M.J. & Lander E.S. 2008. Genetic mapping in human disease. Science 322: 881–888. doi: 10.1126/science.1156409 http://dx.doi.org/10.1126/science.1156409CrossrefGoogle Scholar

  • [2] Aulchenko Y.S., de Koning D.J. & Haley C. 2007. Genome-wide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 177: 577–585. doi: 10.1534/genetics.107.075614 http://dx.doi.org/10.1534/genetics.107.075614CrossrefGoogle Scholar

  • [3] Bailey D.W. 1971. Recombinant-inbred strains. An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation 11: 325–327. http://dx.doi.org/10.1097/00007890-197103000-00013Google Scholar

  • [4] Blanchette M., Bataille A., Chen X., Poitras C., Laganiere J., Lefebvre C., Deblois G., Giguere V., Ferretti V., Bergeron D., Coulombe B. & Robert F. 2006. Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Res. 16: 656–668. doi: 10.1101/gr.4866006 http://dx.doi.org/10.1101/gr.4866006CrossrefGoogle Scholar

  • [5] Bock C., Tomazou E.M., Brinkman A.B., Müller F., Simmer F., Gu H.C., Jäger N., Gnirke A., Stunnenberg H.G. & Meissner A. 2010. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat. Biotechnol. 28: 1106–1114. doi: 10.1038/nbt.1681 http://dx.doi.org/10.1038/nbt.1681CrossrefGoogle Scholar

  • [6] Brem R.B., Storey J.D., Whittle J. & Kruglyak L. 2005. Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 436: 701–703. doi: 10.1038/nature03865 http://dx.doi.org/10.1038/nature03865CrossrefGoogle Scholar

  • [7] Brendan M. 2008. Personal genomes: the case of the missing heritability. Nature 456: 18–21. doi: 10.1038/456018a CrossrefGoogle Scholar

  • [8] Broman K.W. 2005. The genomes of recombinant inbred lines. Genetics 169: 1133–1146. doi: 10.1534/genetics.104.035212 http://dx.doi.org/10.1534/genetics.104.035212CrossrefGoogle Scholar

  • [9] Bystrykh L., Weersing E., Dontje B., Sutton S., Pletcher M.T., Wiltshire T., Su A.I., Vellenga E., Wang J., Manly K.F., Lu L., Chesler E.J., Alberts R., Jansen R.C., Williams R.W., Cooke M.P. & de Haan G. 2005. Uncovering regulatory pathways that affect hematopoietic stem cell function using “genetical genomics”. Nat. Genet. 37: 225–232. doi: 10.1038/ng1497 http://dx.doi.org/10.1038/ng1497CrossrefGoogle Scholar

  • [10] Chabot A., Shrit R.A., Blekhman R. & Gilad Y. 2007. Using reporter gene assays to identify cis-regulatory differences between humans and chimpanzees. Genetics 176: 2069–2076. doi: 10.1534/genetics.107.073429 http://dx.doi.org/10.1534/genetics.107.073429CrossrefGoogle Scholar

  • [11] Chen K., Wallis J.W., McLellan M.D., Larson D.E., Kalicki J.M., Pohl C.S., McGrath S.D., Wendl M.C., Zhang Q., Locke D.P., Shi X., Fulton R.S., Ley T.J., Wilson R.K., Ding L. & Mardis E.R. 2009. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Meth. 6: 677–681. doi: 10.1038/nmeth.1363 http://dx.doi.org/10.1038/nmeth.1363CrossrefGoogle Scholar

  • [12] Chen Y., Zhu J., Lum P.Y., Yang X., Pinto S., MacNeil D.J., Zhang C., Lamb J., Edwards S., Sieberts S.K., Leonardson A., Castellini L.W., Wang S., Champy M.F., Zhang B., Emilsson V., Doss S., Ghazalpour A., Horvath S., Drake T.A., Lusis A.J. & Schadt E.E. 2008. Variations in DNA elucidate molecular networks that cause disease. Nature 452: 429–435. doi: 10.1038/nature06757 http://dx.doi.org/10.1038/nature06757CrossrefGoogle Scholar

  • [13] Chesler E.J., Miller D.R., Branstetter L.R., Galloway L.D., Jackson B.L., Philip V.M., Voy B.H., Culiat C.T., Threadgill D.W., Williams R.W., Churchill G.A., Johnson D.K. & Manly K.F. 2008. The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics. Mamm. Genome 19: 382–389. doi: 10.1007/s00335-008-9135-8 http://dx.doi.org/10.1007/s00335-008-9135-8CrossrefGoogle Scholar

  • [14] Demant P. & Hart A.A. 1986. Recombinant congenic strains — a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics 24: 416–422. doi: 10.1007/BF00377961 http://dx.doi.org/10.1007/BF00377961CrossrefGoogle Scholar

  • [15] Deng H.W., Xu F.H., Huang Q.Y., Shen H., Deng H., Conway T., Liu Y.J., Liu Y.Z., Li J.L., Zhang H.T., Davies K.M. & Recker R.R. 2002. A whole-genome linkage scan suggests several genomic regions potentially containing quantitative trait loci for osteoporosis. J. Clin. Endocrinol Metab. 87: 5151–5159. doi: 10.1210/jc.2002-020474 http://dx.doi.org/10.1210/jc.2002-020474CrossrefGoogle Scholar

  • [16] Devlin B., Bacanu S. A. & Roeder K. 2004. Genomic control to the extreme. Nat. Genet. 36: 1129–1130. doi: 10.1038/ng1104-1129 http://dx.doi.org/10.1038/ng1104-1129CrossrefGoogle Scholar

  • [17] Ding L.H., Shingyoji M., Chen F., Hwang J.J., Burma S., Lee C., Cheng J.F. & Chen D.J. 2005. Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses. Radiat. Res. 164: 17–26. doi: 10.1667/RR3354 http://dx.doi.org/10.1667/RR3354CrossrefGoogle Scholar

  • [18] Dixon A., Liang L., Moffatt M., Chen W., Heath S., Wong K., Taylor J., Burnett E., Gut I., Farrall M., Lathrop G.M., Abecasis G.R. & Cookson W.O.C. 2007. A genome-wide association study of global gene expression. Nat. Genet. 39: 1202–1207. doi: 10.1038/ng2109 http://dx.doi.org/10.1038/ng2109CrossrefGoogle Scholar

  • [19] Donnelly P. 2008. Progress and challenges in genome-wide association studies in humans. Nature 456: 728–731. doi: 10.1038/nature07631 http://dx.doi.org/10.1038/nature07631CrossrefGoogle Scholar

  • [20] Druka A., Potokina E., Luo Z., Bonar N., Druka I., Zhang L., Marshall D.F., Steffenson B.J., Close T.J., Wise R.P., Kleinhofs A., Williams R.W., Kearsey M.J. & Waugh R. 2008. Exploiting regulatory variation to identify genes underlying quantitative resistance to the wheat stem rust pathogen Puccinia graminis f. sp. tritici in barley. Theor. Appl. Genet. 117: 261–272. doi: 10.1007/s00122-008-0771-x http://dx.doi.org/10.1007/s00122-008-0771-xCrossrefGoogle Scholar

  • [21] Duerr R.H., Taylor K.D., Brant S.R., Rioux J.D., Silverberg M.S., Daly M.J., Steinhart A.H., Abraham C., Regueiro M., Griffiths A., Dassopoulos T., Bitton A., Yang H., Targan S., Datta L.W., Kistner E.O., Schumm L.P., Lee A.T., Gregersen P.K., Barmada M.M., Rotter J.I., Nicolae D.L. & Cho J.H. 2006. A genome-wide association study identifies IL23R as an in-flammatory bowel disease gene. Science 314: 1461–1463. doi: 10.1126/science.1135245 http://dx.doi.org/10.1126/science.1135245CrossrefGoogle Scholar

  • [22] Edwards A.O., Ritter III R., Abel K.J., Manning A., Panhuysen C. & Farrer L.A. 2005. Complement factor H polymorphism and age-related macular degeneration. Science 308: 421–424. doi: 10.1126/science.1110189 http://dx.doi.org/10.1126/science.1110189CrossrefGoogle Scholar

  • [23] Eichler E.E., Flint J., Gibson G., Kong A., Leal S.M., Moore J.H. & Nadeau J.H. 2010. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11: 446–450. doi: 10.1038/nrg2809 http://dx.doi.org/10.1038/nrg2809CrossrefGoogle Scholar

  • [24] Emilsson V., Thorleifsson G., Zhang B., Leonardson A., Zink F., Zhu J., Carlson S., Helgason A., Walters G.B., Gunnarsdottir S., Mouy M., Steinthorsdottir V., Eiriksdottir G.H., Bjornsdottir G., Reynisdottir I., Gudbjartsson D., Helgadottir A., Jonasdottir A., Jonasdottir A., Styrkarsdottir U., Gretarsdottir S., Magnusson K.P., Stefansson H., Fossdal R., Kristjansson K., Gislason H.G., Stefansson T., Leifsson B.G., Thorsteinsdottir U., Lamb J.R., Gulcher J.R., Reitman M.L., Kong A., Schadt E.E. & Stefansson K. 2008. Genetics of gene expression and its effect on disease. Nature 452: 423–428. doi: 10.1038/nature06758 http://dx.doi.org/10.1038/nature06758CrossrefGoogle Scholar

  • [25] ENCODE Project Consortium. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447: 799–816. doi: 10.1038/nature05874 http://dx.doi.org/10.1038/nature05874Google Scholar

  • [26] Fleet J.C., Replogle R. & Salt D.E. 2011. Systems genetics of mineral metabolism. J. Nutrit. 141: 520–525. doi: 10.3945/jn.110.128736 CrossrefGoogle Scholar

  • [27] Frayling T.M., Timpson N.J., Weedon M.N., Zeggini E., Freathy R.M., Lindgren C.M., Perry J.R.B., Elliott K.S., Lango H., Rayner N.W., Shields B., Harries L.W., Barrett J.C., Ellard S., Groves C.J., Knight B., Patch A.M., Ness A.R., Ebrahim S., Lawlor D.A., Ring S.M., Ben-Shlomo Y., Jarvelin M.R., Sovio U., Bennett A.J., Melzer D., Ferrucci L., Loos R.J.F., Barroso I., Wareham N.J., Karpe F., Owen K.R., Cardon L.R., Walker M., Hitman G.A., Palmer C.N.A., Doney A.S.F., Morris A.D., Smith G.D., The Wellcome Trust Case Control Consortium, Hattersley A.T. & McCarthy M.I. 2007. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316: 889–894. doi: 10.1126/science.1141634 http://dx.doi.org/10.1126/science.1141634CrossrefGoogle Scholar

  • [28] Gatti D.M., Harrill A.H., Wright F.A., Threadgill D.W. & Rusyn I. 2009. Replication and narrowing of gene expression quantitative trait loci using inbred mice. Mamm. Genome 20: 437–446. doi: 10.1007/s00335-009-9199-0 http://dx.doi.org/10.1007/s00335-009-9199-0CrossrefGoogle Scholar

  • [29] Gatti R.A. 2001. The inherited basis of human radiosensitivity. Acta Oncol. 40: 702–711. http://dx.doi.org/10.1080/02841860152619115Google Scholar

  • [30] Gibbs J.R., van der Brug M.P., Hernandez D.G., Traynor B.J., Nalls M.A., Lai S.L., Arepalli S., Dillman A., Rafferty Ian P., Troncoso J., Johnson R., Zielke H.R., Ferrucci L., Longo D.L., Cookson M.R. & Singleton A.B. 2010. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 6: e1000952. doi: 10.1371/journal.pgen.1000952 http://dx.doi.org/10.1371/journal.pgen.1000952CrossrefGoogle Scholar

  • [31] Gilad Y., Rifkin S. & Pritchard J. 2008. Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet. 24: 408–415. doi: 10.1016/j.tig.2008.06.001 http://dx.doi.org/10.1016/j.tig.2008.06.001CrossrefGoogle Scholar

  • [32] Göring H.H.H., Curran J.E., Johnson M.P., Dyer T.D., Charlesworth J., Cole S.A., Jowett J.B.M., Abraham L.J., Rainwater D.L., Comuzzie A.G., Mahaney M.C., Almasy L., MacCluer J.W., Kissebah A.H., Collier G.R., Moses E.K. & Blangero J. 2007. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat. Genet. 39: 1208–1216. doi: 10.1038/ng2119 http://dx.doi.org/10.1038/ng2119CrossrefGoogle Scholar

  • [33] Grant S.F., Thorleifsson G., Reynisdottir I., Benediktsson R., Manolescu A., Sainz J., Helgason A., Stefansson H., Emilsson V., Helgadottir A., Styrkarsdottir U., Magnusson K.P., Walters G.B., Palsdottir E., Jonsdottir T., Gudmundsdottir T., Gylfason A., Saemundsdottir J., Wilensky R.L., Reilly M.P., Rader D.J., Bagger Y., Christiansen C., Gudnason V., Sigurdsson G., Thorsteinsdottir U., Gulcher J.R., Kong A. & Stefansson K. 2006. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38: 320–323. doi: 10.1038/ng1732 http://dx.doi.org/10.1038/ng1732CrossrefGoogle Scholar

  • [34] Guha Thakurta D., Xie T., Anand M., Edwards S.W., Li G., Wang S.S. & Schadt E.E. 2006. Cis-regulatory variations: A study of SNPs around genes showing cis-linkage in segregating mouse populations. BMC Genomics 7: 235. doi: 10.1186/1471-2164-7-235 http://dx.doi.org/10.1186/1471-2164-7-235CrossrefGoogle Scholar

  • [35] Gunter C. 2008. Quantitative genetics. Nature 456: 719. doi: 10.1038/456719a http://dx.doi.org/10.1038/456719aCrossrefGoogle Scholar

  • [36] Haines J.L., Hauser M.A., Schnidt S., Scott W.K., Olson L.M., Gallins P., Spencer K.L., Kwan S.Y., Noureddine M., Gilbert J.R., Schnetz-Boutaud N., Agarwal A., Postel E.A. & Pericak-Vance M.A. 2005. Complement factor H variant increases the risk of age-related macular degeneration. Science 308: 419–421. doi: 10.1126/science.1110359 http://dx.doi.org/10.1126/science.1110359CrossrefGoogle Scholar

  • [37] Han B., Kang H.M. & Eskin E. 2009. Rapid and accurate multiple testing correction and power estimation for millions of correlated markers. PLoS Genet. 5: e1000456. doi: 10.1371/journal. pgen.1000456 http://dx.doi.org/10.1371/journal.pgen.1000456CrossrefGoogle Scholar

  • [38] Harbison C.T., Gordon D.B., Lee T.I., Rinaldi N.J., Macisaac K.D., Danford T.W., Hannett N.M., Tagne J., Reynolds D.B., Yoo J., Jennings E.G., Zeitlinger J., Pokholok D.K., Kellis M., Rolfe P.A., Takusagawa K.T., Lander E.S., Gifford D.K., Fraenkel E. & Young R.A. 2004. Transcriptional regulatory code of a eukaryotic genome. Nature 431: 99–104. doi: 10.1038/nature02800 http://dx.doi.org/10.1038/nature02800CrossrefGoogle Scholar

  • [39] Herbert A., Gerry N.P., McQueen M.B., Heid I.M., Pfeufer A., Illig T., Wichmann H.E., Meitinger T., Hunter D., Hu F.B., Colditz G., Hinney A., Hebebrand J., Koberwitz K., Zhu X., Cooper R., Ardlie K., Lyon H., Hirschhorn J.N., Laird N.M., Lenburg M.E., Lange C. & Christman M.F. 2006. A common genetic variant is associated with adult and childhood obesity. Science 312: 279–283. doi: 10.1126/science.1124779 http://dx.doi.org/10.1126/science.1124779CrossrefGoogle Scholar

  • [40] Hitzemann B., Dains K., Kanes S. & Hitzemann R. 1994. Further studies on the relationship between dopamine cell density and haloperidol-induced catalepsy. J. Pharmacol. Exp. Ther. 271: 969–976. Google Scholar

  • [41] Holloway B. & Li B. 2010. Expression QTLs: applications for crop improvement. Mol. Breeding 26: 381–391. doi: 10.1007/s11032-010-9396-2 http://dx.doi.org/10.1007/s11032-010-9396-2CrossrefGoogle Scholar

  • [42] Hood L., Heath J.R., Phelps M.E. & Lin B. 2004. Systems biology and new technologies enable predictive and preventative medicine. Science 306: 640–643. doi: 10.1126/science.1104635 http://dx.doi.org/10.1126/science.1104635CrossrefGoogle Scholar

  • [43] Hormozdiari F., Alkan C., Eichler E.E. & Sahinalp S.C. 2009. Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res. 19: 1270–1278. doi: 10.1101/gr.088633.108 http://dx.doi.org/10.1101/gr.088633.108CrossrefGoogle Scholar

  • [44] Huang Q.Y., Recker R.R. & Deng H.W. 2003. Searching for the osteoporosis gene(s) in the post-genome era: progress and challenge. Osteoporos. Int. 14: 701–715. doi: 10.1007/s00198-003-1445-9 http://dx.doi.org/10.1007/s00198-003-1445-9CrossrefGoogle Scholar

  • [45] Huang R.S., Duan S., Bleibel W.K., Kistner E.O., Zhang W., Clark T.A., Chen T.X., Schweitzer A.C., Blume J.E., Cox N.J. & Dolan M.E. 2007. A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity. Proc. Natl. Acad. Sci. USA 104: 9758–9763. doi: 10.1073/pnas.0703736104 http://dx.doi.org/10.1073/pnas.0703736104CrossrefGoogle Scholar

  • [46] Hunter D.J., Kraft P., Jacobs K.B., Cox D.G., Yeager M., Hankinson S.E., Wacholder S., Wang Z., Welch R., Hutchinson A., Wang J., Yu K., Chatterjee N., Orr N., Willett W.C., Colditz G.A., Ziegler R.G., Berg C.D., Buys S.S., McCarty C.A., Feigelson H.S., Calle E.E., Thun M.J., Hayes R.B., Tucker M., Gerhard D.S., Fraumeni J.F. Jr, Hoover R.N., Thomas G. & Chanock S.J. 2007. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39: 870–874. doi: 10.1038/ng2075 http://dx.doi.org/10.1038/ng2075CrossrefGoogle Scholar

  • [47] Iakoubova O.A., Olsson C.L., Dains K.M., Ross D.A., Andalibi A., Lau K., Choi J., Kalcheva I., Cunanan M., Louie J., Nimon V., Machrus M., Bentley L.G., Beauheim C., Silvey S., Cavalcoli J., Lusis A.J. & West D.B. 2001. Genome-tagged mice (GTM): two sets of genome-wide congenic strains. Genomics 74: 89–104. doi: 10.1006/geno.2000.6497 http://dx.doi.org/10.1006/geno.2000.6497CrossrefGoogle Scholar

  • [48] Jansen R.C. 2003. Studying complex biological systems using multifactorial perturbation. Nat. Rev. Genet. 4: 145–151. doi: 10.1038/nrg996 http://dx.doi.org/10.1038/nrg996CrossrefGoogle Scholar

  • [49] Jansen R.C. & Nap J.P. 2001. Genetical genomics: the added value from segregation. Trends Genet. 17: 388–391.doi: 10.1016/S0168-9525(01)02310-1 http://dx.doi.org/10.1016/S0168-9525(01)02310-1CrossrefGoogle Scholar

  • [50] Kang H.M., Sul J.H., Service S.K., Zaitlen N.A., Kong S.Y., Freimer N.B., Sabatti C. & Eskin E. 2010. Variance component model to account for sample structure in genomewide association studies. Nat. Genet. 42: 348–354. doi: 10.1038/ng.548 http://dx.doi.org/10.1038/ng.548CrossrefGoogle Scholar

  • [51] Kim I. & Sinha S. 2007. Indelign: a probabilistic framework for annotation of insertions and deletions in a multiple alignment. Bioinformatics 23: 289–297. doi: 10.1093/bioinformatics/btl578 http://dx.doi.org/10.1093/bioinformatics/btl578CrossrefGoogle Scholar

  • [52] Kim T., Abdullaev Z., Smith A., Ching K., Loukinov D., Green R., Zhang M., Lobanenkov V. & Ren B. 2007. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128: 1231–1245. doi: 10.1016/j.cell.2006.12.048 http://dx.doi.org/10.1016/j.cell.2006.12.048CrossrefGoogle Scholar

  • [53] Kitano H. 2002. Systems biology: a brief overview. Science 295: 1662–1664. doi: 10.1126/science.1069492 http://dx.doi.org/10.1126/science.1069492CrossrefGoogle Scholar

  • [54] Kleinjan D. & van Heyningen V. 2005. Long-range control of gene expression: emerging mechanisms and disruption in disease. Amer. J. Hum. Genet. 76: 8–32. doi: 10.1086/426833 http://dx.doi.org/10.1086/426833CrossrefGoogle Scholar

  • [55] Klein R.J., Zeis C., Chew E.Y., Tsai J.Y., Sackler R.S., Haynes C., Henning A.K., SanGiovanni J.P., Mane S.M., Mayne S.T., Bracken M.B., Ferris F.L., Ott J., Barnstable C. & Hoh J. 2005. Complement factor H polymorphism in agerelated macular degeneration. Science 308: 385–389. doi: 10.1126/science.1109557 http://dx.doi.org/10.1126/science.1109557CrossrefGoogle Scholar

  • [56] Kobolt D.C., Chen K., Wylie T., Larson D.E., McLellan M.D., Mardis E.R., Weinstock G.M., Wilson R.K. & Ding L. 2009. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25: 2283–2285. doi: 10.1093/bioinformatics/btp373 http://dx.doi.org/10.1093/bioinformatics/btp373CrossrefGoogle Scholar

  • [57] Korbel J.O., Abyzov A., Mu X.J., Carriero N., Cayting P., Zhang Z., Snyder M. & Gerstein M.B. 2009. PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genom. Biol. 10: R23. doi: 10.1186/gb-2009-10-2-r23 http://dx.doi.org/10.1186/gb-2009-10-2-r23CrossrefGoogle Scholar

  • [58] Kwan T., Benovoy D., Dias C., Gurd S., Provencher C., Beaulieu P., Hudson T.J., Sladek R. & Majewski J. 2008. Genomewide analysis of transcript isoform variation in humans. Nat. Genet. 40: 225–231. doi: 10.1038/ng.2007.57 http://dx.doi.org/10.1038/ng.2007.57CrossrefGoogle Scholar

  • [59] Lan H., Chen M., Flowers J.B., Yandell B.S., Stapleton D.S., Mata C.M., Mui E.T., Flowers M.T., Schueler K.L., Manly K.F., Williams R.W., Kendziorski C. & Attie A.D. 2006. Combined expression trait correlations and expression quantitative trait locus mapping. PLoS Genet. 2: e6. doi: 10.1371/journal.pgen.0020006 http://dx.doi.org/10.1371/journal.pgen.0020006CrossrefGoogle Scholar

  • [60] Lee S., Cheran E. & Brudno M. 2008. A robust framework for detecting structural variations in a genome. Bioinformatics 24: i59–i67. doi: 10.1093/bioinformatics/btn176 http://dx.doi.org/10.1093/bioinformatics/btn176CrossrefGoogle Scholar

  • [61] Lee S., Hormozdiari F., Alkan C. & Brudno M. 2009. MoDIL: detecting small indels from clone-end sequencing with mixtures of distributions. Nat. Meth. 6: 473–474. doi: 10.1038/nmeth.f. 256 http://dx.doi.org/10.1038/nmeth.f.256CrossrefGoogle Scholar

  • [62] Li H. & Deng H. 2010. Systems genetics, bioinformatics and eQTL mapping. Genetica 138: 915–924. doi: 10.1007/s10709-010-9480-x http://dx.doi.org/10.1007/s10709-010-9480-xCrossrefGoogle Scholar

  • [63] Li H., Lu L., Manly K.F., Chesler E.J., Bao L., Wang J., Zhou M., Williams R.W. & Cui Y. 2005. Inferring gene transcriptional modulatory relations: a genetical genomics approach. Hum. Mol. Genet. 14: 1119–1125. doi: 10.1093/hmg/ddi124 http://dx.doi.org/10.1093/hmg/ddi124CrossrefGoogle Scholar

  • [64] Li H., Ruan J. & Durbin R. 2008. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18: 1851–1858. doi: 10.1101/gr.0788212.108 http://dx.doi.org/10.1101/gr.078212.108CrossrefGoogle Scholar

  • [65] Liu Y.Z., Guo Y.F., Wang L., Tan L.J., Liu X.G., Pei Y.F., Yan H., Xiong D.H., Deng F.Y., Yu N., Zhang Y.P., Zhang L., Lei S.F., Chen X.D., Liu H.B., Zhu X.Z., Levy S., Papasian C.J., Drees B.M., Hamilton J.J., Recker R.R. & Deng H.W. 2009. Genome-wide association analyses identify SPOCK as a key novel gene underlying age at menarche. PLoS Genet. 5: e1000420. doi: 10.1371/journal.pgen.1000420 http://dx.doi.org/10.1371/journal.pgen.1000420CrossrefGoogle Scholar

  • [66] Lu H., Wang X., Pullen M., Guan H., Chen H., Sahu S., Zhang B., Chen H., Williams R.W., Geisert E.E., Lu L. & Jablonski MM. 2011. Genetic dissection of the Gpnmb network in the eye. Invest. Ophthalmol. Vis. Sci. 52: 4132–42. doi: 10.1167/iovs.10-6493 http://dx.doi.org/10.1167/iovs.10-6493CrossrefGoogle Scholar

  • [67] Lynch R.M. 2010. A systems genetics approach to the characterization of differential low dose radiation responses in BXD recombinant inbred mice. PhD Thesis, University of Tennessee. Google Scholar

  • [68] Mackay T.F.C., Stone E.A. & Ayroles J.F. 2009. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10: 565–577. doi: 10.1038/nrg2612 http://dx.doi.org/10.1038/nrg2612CrossrefGoogle Scholar

  • [69] McCarthy M.I., Abecasis G.R., Cardon L.R., Goldstein D.B., Little J., Ioannidis J.P.A. & Hirschhorn J.N. 2008. Genomewide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9: 356–369. doi: 10.1038/nrg2344 http://dx.doi.org/10.1038/nrg2344CrossrefGoogle Scholar

  • [70] Mehrabian M. Allayee H., Stockton J., Lum P.Y., Drake T.A., Castellani L.W., Suh M., Armour C., Edwards S., Lamb J., Lusis A.J. & Schadt E.E. 2005. Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nat. Genet. 37: 1224–1233. doi: 10.1038/ng1619 http://dx.doi.org/10.1038/ng1619CrossrefGoogle Scholar

  • [71] Michaelson J.J., Alberts R., Schughart K. & Beyer A. 2010. Data-driven assessment of eQTL mapping methods. BMC Genomics 11: 502. doi: 10.1186/1471-2164-11-502 http://dx.doi.org/10.1186/1471-2164-11-502CrossrefGoogle Scholar

  • [72] Michaelson J.J., Loguercio S. & Beyer A. 2009. Detection and interpretation of expression quantitative trait loci (eQTL). Methods 48: 265–276. doi: 10.1016/j.ymeth.2009.03.004 http://dx.doi.org/10.1016/j.ymeth.2009.03.004CrossrefGoogle Scholar

  • [73] Moffatt M.F., Kabesch M., Liang L., Dixon A.L., Strachan D., Heath S., Depner M., von Berg A., Bufe A., Rietschel E., Heinzmann A., Simma B., Frischer T., Willis-Owen S.A.G., Wong K.C.C., Illig T., Vogelberg C., Weiland S.K., von Mutius E., Abecasis G.R., Farrall M., Gut I.G., Lathrop G.M. & Cookson W.O.C. 2007. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448: 470–473. doi: 10.1038/nature06014 http://dx.doi.org/10.1038/nature06014CrossrefGoogle Scholar

  • [74] Morahan G., Peeva V., Mehta M. & Williams R. 2008. Systems genetics can provide new insights in to immune regulation and autoimmunity. Journal of Autoimmunity 31: 233–236. doi: 10.1016/j.jaut.2008.04.011 http://dx.doi.org/10.1016/j.jaut.2008.04.011CrossrefGoogle Scholar

  • [75] Myers A.J., Gibbs J.R., Webster J.A., Rohrer K., Zhao A., Marlowe L., Kaleem M., Leung D., Bryden L., Nath P., Zismann V.L., Joshipura K., Huentelman M.J., Hu-Lince D., Coon K.D., Craig D.W., Pearson J.V., Holmans P., Heward C.B., Reiman E.M., Stephan D. & Hardy J. 2007. A survey of genetic human cortical gene expression. Nat. Genet. 39: 1494–1499. doi: 10.1038/ng.2007.16 http://dx.doi.org/10.1038/ng.2007.16CrossrefGoogle Scholar

  • [76] Nadeau J.H. & Dudley A.M. 2011. Systems genetics. Science 331: 1015–1016. doi: 10.1126/science.1203869 http://dx.doi.org/10.1126/science.1203869CrossrefGoogle Scholar

  • [77] Nadeau J.H., Singer J.B., Matin A. & Lander E.S. 2000. Analysing complex genetic traits with chromosome substitution strains. Nat. Genet. 24: 221–225. doi: 10.1038/73427 http://dx.doi.org/10.1038/73427CrossrefGoogle Scholar

  • [78] Narain P. 2010. Quantitative genetics: past and present. Mol. Breeding 26: 135–143. doi: 10.1007/s11032-010-9406-4 http://dx.doi.org/10.1007/s11032-010-9406-4CrossrefGoogle Scholar

  • [79] Neto E.C., Keller M.P., Attie A.D. & Yandell B.S. 2010. Causal graphical models in systems genetics: a unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. Ann. Appl. Stat. 4: 320–339. doi: 10.1214/09-AOAS288 http://dx.doi.org/10.1214/09-AOAS288CrossrefGoogle Scholar

  • [80] Paigen K. & Eppig J.T. 2000. A mouse phenome project. Mamm. Genome 11: 715–717. doi: 10.1007/s003350010152 http://dx.doi.org/10.1007/s003350010152CrossrefGoogle Scholar

  • [81] Peirce J.L., Li H., Wang J., Manly K.F., Hitzemann R.J., Belknap J.K., Rosen G.D., Goodwin S., Sutter T.R., Williams R.W. & Lu L. 2006. How replicable are mRNA expression QTL? Mamm. Genome 17: 643–656. doi: 10.1007/s00335-005-0187-8 CrossrefGoogle Scholar

  • [82] Pennacchio L., Ahituv N., Moses A., Prabhakar S., Nobrega M., Shoukry M., Minovitsky S., Dubchak I., Holt A., Lewis K.D., Plajzer-Frick I., Akiyama J., Val S.D., Afzal V., Black B.L., Couronne O., Eisen M.B., Visel A. & Rubin E.M. 2006. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444: 499–502. doi: 10.1038/nature05295 http://dx.doi.org/10.1038/nature05295CrossrefGoogle Scholar

  • [83] Petretto E., Mangion J., Dickens N.J., Cook S.A., Kumaran M.K., Lu H., Fischer J., Maatz H., Kren V., Pravenec M., Hubner N. & Aitman T.J. 2006. Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet. 2: e172. doi: 10.1371/journal.pgen.0020172 http://dx.doi.org/10.1371/journal.pgen.0020172CrossrefGoogle Scholar

  • [84] Plaisier C.L., Horvath S., Huertas-Vazquez A., Cruz-Bautista I., Herrera M.F., Tusie-Luna T., Aguilar-Salinas C. & Pajukanta P. 2009. A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet. 5: e1000642. doi: 10.1371/journal.pgen.1000642 http://dx.doi.org/10.1371/journal.pgen.1000642CrossrefGoogle Scholar

  • [85] Price A.L., Patterson N.J., Plenge R.M., Weinblatt M.E., Shadick N.A. & Reich D. 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38: 904–909. doi: 10.1038/ng1847 http://dx.doi.org/10.1038/ng1847CrossrefGoogle Scholar

  • [86] Pritchard J.K., Stephens M. & Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959. Google Scholar

  • [87] Purcell S.M., Wray N.R., Stone J.L., Visscher P.M., O’Donovan M.C., Sullivan P.F. & Sklar P. 2009. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460: 748–752. doi: 10.1038/nature08185 CrossrefGoogle Scholar

  • [88] Raychaudhuri S. 2011. Mapping rare and common causal alleles for complex human diseases. Cell 147: 57–69. doi: 10.1016/j.cell.2011.09.011 http://dx.doi.org/10.1016/j.cell.2011.09.011CrossrefGoogle Scholar

  • [89] Rockman M.V. & Kruglyak L. 2006. Genetics of global gene expression. Nat. Rev. Genet. 7: 862–872. doi: 10.1038/nrg1964 http://dx.doi.org/10.1038/nrg1964CrossrefGoogle Scholar

  • [90] Ruden D.M. 2007. Personalized medicine and quantitative trait transcripts. Nat. Genet. 39: 144–145. doi: 10.1038/ng0207-144 http://dx.doi.org/10.1038/ng0207-144CrossrefGoogle Scholar

  • [91] Ruden D.M., Chen L., Possidente D., Possidente B., Rasouli P., Wang L., Lu X., Garfinkel M.D., Hirsch H.V.B. & Page G.P. 2009. Genetical toxicogenomics in Drosophila identifies master modulatory loci that are regulated by developmental exposure to lead. Neurotoxicology 30: 898–914. doi: 10.1016/j.neuro.2009.08.011 http://dx.doi.org/10.1016/j.neuro.2009.08.011CrossrefGoogle Scholar

  • [92] Rudi B. 2007. From mouse genetics to systems biology. Mamm. Genome 18: 383–388. doi: 10.1007/s00335-007-9044-2 http://dx.doi.org/10.1007/s00335-007-9044-2CrossrefGoogle Scholar

  • [93] Sandve G.K., Ferkingstad E., & Nygard S. 2011. Sequential Monte Carlo multiple testing. Bioinformatics 27: 3235–3241. doi: 10.1093/bioinformatics/btr568 http://dx.doi.org/10.1093/bioinformatics/btr568CrossrefGoogle Scholar

  • [94] Schadt E.E., Lamb J., Yang X., Zhu J., Edwards S., GuhaThakurta D., Sieberts S.K., Monks S., Reitman M., Zhang C., Lum P.Y., Leonardson A., Thieringer R., Metzger J.M., Yang L., Castle J., Zhu H., Kash S.F., Drake T.A., Sachs A. & Lusis A.J. 2005. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 37: 710–717. doi: 10.1038/ng1589 http://dx.doi.org/10.1038/ng1589CrossrefGoogle Scholar

  • [95] Schadt E.E. & Lum P.Y. 2006. Reverse engineering gene networks to identify key drivers of complex disease phenotypes. J. Lipid Res. 47: 2601–2613. doi: 10.1194/jlr.R600026-JLR200 http://dx.doi.org/10.1194/jlr.R600026-JLR200CrossrefGoogle Scholar

  • [96] Schadt E.E., Molony C., Chudin E., Hao K., Yang X., Lum P.Y., Kasarskis A., Zhang B., Wang S., Suver C., Zhu J., Millstein J., Sieberts S., Lamb J., GuhaThakurta D., Derry J., Storey J.D., Avila-Campillo I., Kruger M.J., Johnson J.M., Rohl C.A., van Nas A., Mehrabian M., Drake T.A., Lusis A.J., Smith R.C., Guengerich F.P., Strom S.C., Schuetz E., Rushmore T.H. & Ulrich R. 2008. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6: e107. doi: 10.1371/journal.pbio.0060107 http://dx.doi.org/10.1371/journal.pbio.0060107CrossrefGoogle Scholar

  • [97] Schadt E.E., Zhang B. & Zhu J. 2009. Advances in systems biology are enhancing our understanding of disease and moving us closer to novel disease treatments. Genetica 136: 259–269. doi: 10.1007/s10709-009-9359-x http://dx.doi.org/10.1007/s10709-009-9359-xCrossrefGoogle Scholar

  • [98] Sieberts S.K. & Schadt E.E. 2007. Moving toward a system genetics view of disease. Mamm. Genome 18: 389–401. doi: 10.1007/s00335-007-9040-6 http://dx.doi.org/10.1007/s00335-007-9040-6CrossrefGoogle Scholar

  • [99] Silpa S., Andreas B., Richard M.K., Yonina E. & Trey I. 2008. eQED: an efficient method for interpreting eQTL associations using protein networks. Mol. Sys. Biol. 4: 162. doi: 10.1038/msb.2008.4 CrossrefGoogle Scholar

  • [100] Simonis N., Rual J., Carvunis A., Tasan M., Lemmens I., Hirozane-Kishikawa T., Hao T., Sahalie J.M., Venkatesan K., Gebreab F., Cevik S., Klitgord N., Fan C., Braun P., Li N., Ayivi-Guedehoussou N., Dann E., Bertin N., Szeto D., Dricot A., Yildirim M.A., Lin C., de Smet A.S., Kao H.L., Simon C., Smolyar A., Ahn J.S., Tewari M., Boxem M., Milstein S., Yu H., Dreze M., Vandenhaute J., Gunsalus K.C., Cusick M.E., Hill D.E., Tavernier J., Roth F.P. & Vidal M. 2009. Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nat. Meth. 6: 47–54. doi: 10.1038/nmeth.1279 http://dx.doi.org/10.1038/nmeth.1279CrossrefGoogle Scholar

  • [101] Sindi S., Helman E., Bashir A. & Raphael B.J. 2009. A geometric approach for classification and comparison of structural variants. Bioinformatics 25: i222–i230. doi: 10.1093/bioinformatics/ btp208 http://dx.doi.org/10.1093/bioinformatics/btp208CrossrefGoogle Scholar

  • [102] Sladek R., Rocheleau G., Rung J., Dina C., Shen L., Serre D., Boutin P., Vincent D., Belisle A., Hadjadj S., Balkau B., Heude B., Charpentier G., Hudson T.J., Montpetit A., Pshezhetsky A.V., Prentki M., Posner B.I., Balding D.J., Meyre D., Polychronakos C. & Froguel P. 2007. A genomewide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881–885. doi: 10.1038/ nature05616 http://dx.doi.org/10.1038/nature05616CrossrefGoogle Scholar

  • [103] Stefansson H., Rujescu D., Cichon S., Pietiläinen O.P.H., Ingason A., Steinberg S., Fossdal R., Sigurdsson E., Sigmundsson T., Buizer-Voskamp J.E., Hansen T., Jakobsen K.D., Muglia P., Francks C., Matthews P.M., Gylfason A., Halldorsson B.V., Gudbjartsson D., Thorgeirsson T.E., Sigurdsson A., Jonasdottir A., Jonasdottir A., Bjornsson A., Mattiasdottir S., Blondal T., Haraldsson M., Magnusdottir B.B., Giegling I., Möller H.J., Hartmann A., Shianna K.V., Ge D., Need A.C., Crombie C., Fraser G., Walker N., Lonnqvist J., Suvisaari J., Tuulio-Henriksson A., Paunio T., Toulopoulou T., Bramon E., Forti M.D., Murray R., Ruggeri M., Vassos E., Tosato S., Walshe M., Li T., Vasilescu C., Mühleisen T.W., Wang A.G., Ullum H., Djurovic S., Melle I., Olesen J., Kiemeney L.A., Franke B., GROUP, Sabatti C., Freimer N.B., Gulcher J.R., Thorsteinsdottir U., Kong A., Andreassen O.A., Ophoff R.A., Georgi A., Rietschel M., Werge T., Petursson H., Goldstein D.B., Nöthen M.M., Peltonen L., Collier D.A., St Clair D. & Stefansson K. 2008. Large recurrent microdeletions associated with schizophrenia. Nature 455: 232–237. doi: 10.1038/nature07229 http://dx.doi.org/10.1038/nature07229CrossrefGoogle Scholar

  • [104] Stranger B.E., Forrest M.S., Dunning M., Ingle C.E., Beazley C., Thorne N., Redon R., Bird C.P., Grassi A., Lee C., Tyler-Smith C., Carter N., Scherer S.W., Tavaré S., Deloukas P., Hurles M.E. & Dermitzakis E.T. 2007a. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315: 848–853. doi: 10.1126/science.1136678 http://dx.doi.org/10.1126/science.1136678CrossrefGoogle Scholar

  • [105] Stranger B., Nica A., Forrest M., Dimas A., Bird C., Beazley C., Ingle C.E., Dunning M., Flicek P., Koller D., Montgomery S., Tavaré S., Deloukas P. & Dermitzakis E.T. 2007b. Population genomics of human gene expression. Nat. Genet. 39: 1217–1224. doi: 10.1038/ng2142 http://dx.doi.org/10.1038/ng2142CrossrefGoogle Scholar

  • [106] Su W.L., Sieberts S.K., Kleinhanz R.R., Lux K., Millstein J., Molony C. & Schadt E.E. 2010. Assessing the prospects of genome-wide association studies performed in inbred mice. Mamm. Genome 21: 143–152. doi: 10.1007/s00335-010-9249-7 http://dx.doi.org/10.1007/s00335-010-9249-7CrossrefGoogle Scholar

  • [107] Swami W. 2009. Systems genetics: networking complex traits. Nat. Rev. Genet. 10: 219. doi: 10.1038/nrg2566 http://dx.doi.org/10.1038/nrg2566CrossrefGoogle Scholar

  • [108] The FANTOM Consortium & Riken Omics Science Center. 2009. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat. Genet. 41: 553–562. doi: 10.1038/ng.375 http://dx.doi.org/10.1038/ng.375CrossrefGoogle Scholar

  • [109] The International Schizophrenia Consortium. 2008. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455: 237–241. doi: 10.1038/nature07239 http://dx.doi.org/10.1038/nature07239CrossrefGoogle Scholar

  • [110] Veyrieras J.B., Kudaravalli S., Kim S.Y., Dermitzakis E.T., Gilad Y., Stephens M. & Pritchard J.K. 2008. High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet. 4: e1000214. doi: 10.1371/journal. pgen.1000214 http://dx.doi.org/10.1371/journal.pgen.1000214CrossrefGoogle Scholar

  • [111] Vineis P. & Pearce N. 2010. Missing heritability in genome-wide association study research. Nat. Rev. Genet. 11: 589. doi: 10.1038/nrg2809-c2 http://dx.doi.org/10.1038/nrg2809-c2CrossrefGoogle Scholar

  • [112] Williams R.W. 2006. Expression genetics and the phenotype revolution. Mamm. Genome 17: 496–502. doi: 10.1007/s00335-006-0006-x http://dx.doi.org/10.1007/s00335-006-0006-xCrossrefGoogle Scholar

  • [113] Workman C.T., Mak H.C., McCuine S., Tagne J., Agarwal M., Ozier O., Begley T.J., Samson L.D. & Ideker T. 2006. A systems approach to mapping DNA damage response pathways. Science 312: 1054–1059. doi: 10.1126/science.1122088 http://dx.doi.org/10.1126/science.1122088CrossrefGoogle Scholar

  • [114] Wray G. 2007. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8: 206–216. doi: 10.1038/nrg2063 http://dx.doi.org/10.1038/nrg2063CrossrefGoogle Scholar

  • [115] Xie C. & Tammi M. 2009. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics 10: 80. doi: 10.1186/1471-2105-10-80 http://dx.doi.org/10.1186/1471-2105-10-80CrossrefGoogle Scholar

  • [116] Xie X., Mikkelsen T., Gnirke A., Lindblad-Toh K., Kellis M. & Lander E.S. 2007. Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proc. Natl. Acad. Sci. USA 104: 7145–7150.doi:10.1073/pnas.0701811104 http://dx.doi.org/10.1073/pnas.0701811104CrossrefGoogle Scholar

  • [117] Xiong D.H., Long J.R., Recker R.R. & Deng H.W. 2003. Pharmacogenomic approaches to osteoporosis. Pharmacogenom. J. 3: 261–263. doi:10.1038/sj.tpj. 6500199 http://dx.doi.org/10.1038/sj.tpj.6500199CrossrefGoogle Scholar

  • [118] Yang H.C., Liang Y.J., Wu Y.L., Chung C.M., Chiang K.M., Ho H.Y., Ting C.T., Lin T.H., Sheu S.H., Tsai W.C., Chen J.H., Leu H.B., Yin W.H., Chiu T.Y., Chen C.I., Fann C.S.J., Wu J.Y., Lin T.N., Lin S.J., Chen Y.T., Chen J.W. & Pan W.H. 2009. Genome-wide association study of young-onset hypertension in the Han Chinese population of Taiwan. PLoS ONE 4: e5459. doi:10.1371/journal.pone.0005459 http://dx.doi.org/10.1371/journal.pone.0005459CrossrefGoogle Scholar

  • [119] Ye K., Schulz M.H., Long Q., Apweiler R. & Ning Z. 2009. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25: 2865–2871. doi: 10.1093/bioinformatics/ btp394 http://dx.doi.org/10.1093/bioinformatics/btp394CrossrefGoogle Scholar

  • [120] Yu J., Pressoir G., Briggs W.H., Vroh B.I., Yamasaki M., Doebley J.F., McMullen M.D., Gaut B.S., Nielsen D.M., Holland J.B., Kresovich S. & Buckler E.S. 2005. A unified mixedmodel method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38: 203–208. doi: 10.1038/ng1702 http://dx.doi.org/10.1038/ng1702CrossrefGoogle Scholar

  • [121] Zhang Z., Ersoz E., Lai C.Q., Todhunter R.J., Tiwari H.K., Gore M.A., Bradbury P.J., Yu J., Arnett D.K., Ordovas J.M. & Buckler E.S. 2010. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42: 355–360. doi: 10.1038/ng.546 http://dx.doi.org/10.1038/ng.546CrossrefGoogle Scholar

  • [122] Zhang Z.D., Du J., Lam H., Abyzov A., Urban A.E., Snyder M. & Gerstein M. 2011. Identification of genomic indels and structural variations using split reads. BMC Genomics 12: 375. doi: 10.1186/1471-2164-12-375 http://dx.doi.org/10.1186/1471-2164-12-375CrossrefGoogle Scholar

  • [123] Zhu C., Li X. & Yu J. 2011. Integrating rare-variant testing, function prediction, and gene network in composite resequencing-based genome-wide association studies (CRGWAS). G3 Genes Genomes Genetics 1: 233–243. doi: 10.1534/g3.111.000364 Google Scholar

About the article

Published Online: 2012-04-18

Published in Print: 2012-06-01


Citation Information: Biologia, Volume 67, Issue 3, Pages 435–446, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-012-0026-9.

Export Citation

© 2012 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hong Li
Theory in Biosciences, 2013, Volume 132, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in