Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 67, Issue 3


Experience with using Ellenberg’s R indicator values in Slovakia: Oligotrophic and mesotrophic submontane broad-leaved forests

Juraj Balkovič
  • Department of Soil Science, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, SK-84215, Bratislava, Slovakia
  • International Institute for Applied Systems Analysis (IIASA), Ecosystem Services and Management Program, Schlossplatz 1, A-2361, Laxenburg, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jozef Kollár / Vojtech Šimonovič
Published Online: 2012-04-18 | DOI: https://doi.org/10.2478/s11756-012-0027-8


Ellenberg’s indicator values have been suggested as useful method of estimating site conditions using plants. We examined whether Ellenberg’s R values are suitable for indicating soil reaction and if calibration to physical pH measurements can improve bioindication in oligotrophic and mesotrophic submontane broad-leaved forests in Slovakia. Vegetation relevés and pH-H2O and pH-CaCl2 soil reaction were recorded for this purpose. Ellenberg’s R values (R e) were compared to Jurko’s indicator values (R j) and a set of species R values and tolerances (T), which were calibrated with physical pH data using the weighted averaging (R w, T w) and Huisman-Olff-Fresco modelling (R h, T h). Original R e values were then recalibrated with measured pH data to establish new, adjusted set of scores (R c, T c) at Ellenberg’s scale. The Re values are significantly correlated with the other R values, and they demonstrate similar frequency distribution to R j and R w values for the studied species pool. The frequency distribution becomes similar across all the R values when indifferent species were excluded. The performance of all the indicator values in terms of bioindication was tested. Relevé means of the R values were regressed on the field pH measurements. The performance of bioindication varied from 36% to 49% of the explained variance for pH-CaCl2, with the R e and R c values yielding 46% and 49% respectively. The bioindication slightly improved for all calibrated methods (R w, R h and R c) when species were weighted inversely with their tolerances — the performance varied from 42% to 51%, and the R c values performed most effectively. We concluded that Ellenberg’s R values represent a powerful system for bioindicating soil acidity when compared to the other alternatives, with pH-CaCl2 showing better results than pH-H2O. Recalibration of Ellenberg’s values to the measured data improved the indicator system.

Keywords: bioindication; HOF model; soil acidity; species indicator values; weighted averaging

  • [1] Austin M.P. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Model. 157: 101–118. http://dx.doi.org/10.1016/S0304-3800(02)00205-3CrossrefGoogle Scholar

  • [2] Austin M.P., Nicholls A.O., Doherty M.D. & Meyers J.A. 1994. Determining species response functions to an environmental gradient by means of a β-function. J. Veg. Sci. 5: 215–228. http://dx.doi.org/10.2307/3236154CrossrefGoogle Scholar

  • [3] Balkovič J., Kollár J., Čemanová G. & Šimonovič V. 2010. Indicating soil acidity using vegetation relevés in spatially limited areas — case study from the Považský Inovec, Slovakia. Folia Geobot. 45: 253–277. http://dx.doi.org/10.1007/s12224-010-9065-6Web of ScienceCrossrefGoogle Scholar

  • [4] Birks H.J.B., Line J.M., Juggins S., Stevenson A.C. & ter Braak C.J.F. 1990. Diatoms and pH reconstruction. Philos. Trans. R. Soc. Lond. B 327: 263–278. http://dx.doi.org/10.1098/rstb.1990.0062CrossrefGoogle Scholar

  • [5] Braun-Blanquet J. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde, Ed. 3. Springer Verlag, Wien. Google Scholar

  • [6] Chovancová G. & Križová E. 2010. Successional development of vegetation on permanent plots in the High Tatra Mts. Folia Oecol. 37: 144–151. Google Scholar

  • [7] Dlapa P. 2002. Solid-phase and pH control of aluminium activity in acid soils. Zesz. Probl. Postepow. Nauk. Roln. 482: 135–141. Google Scholar

  • [8] Ellenberg H. 1979. Zeigerwerte der Gefässpflanzen Mitteleuropas. Ed. 2. Scripta Geobot 9: 1–122. Google Scholar

  • [9] Ellenberg H., Weber H.E., Düll R., Wirth W., Werner W. & Paulißen D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Ed. 2. Scripta Geobot 18: 1–258. Google Scholar

  • [10] Ertsen A.C.D., Alkemade J.R.M. & Wassen M.J. 1998. Calibrating Ellenberg indicator values for moisture, acidity, nutrients availability and salinity in the Netherlands. Pl. Ecol. 135: 113–124. http://dx.doi.org/10.1023/A:1009765529310CrossrefGoogle Scholar

  • [11] Ewald J. 2003. The sensitivity of Ellenberg indicator values to the completeness of vegetation relevés. Basic Appl. Ecol. 4: 507–513. http://dx.doi.org/10.1078/1439-1791-00155CrossrefGoogle Scholar

  • [12] Gégout J.C. & Pierrat J.C. 1998. L’autécologie des espčces végétales: une approche par régression non paramétrique. Écologie 29: 473–482. Google Scholar

  • [13] Gégout J.P. & Krizova E. 2003. Comparison of indicator values of forest understorey plant species in Western Carpathians (Slovakia) and Vosges Mountains (France). For. Ecol. Manage. 182: 1–11. http://dx.doi.org/10.1016/S0378-1127(03)00068-9CrossrefGoogle Scholar

  • [14] Hennekens S.M. & Schaminée J.H.J. 2001. Turboveg, a comprehensive database management system for vegetation data. J. Veg. Sci. 12: 589–591. http://dx.doi.org/10.2307/3237010CrossrefGoogle Scholar

  • [15] Hill M.O., Roy D.B., Mountford J.O. & Bunce R.G.H. 2000. Extending Ellenberg’s indicator values to a new area: an algorithmic approach. J. Appl. Ecol. 37: 3–15. http://dx.doi.org/10.1046/j.1365-2664.2000.00466.xCrossrefGoogle Scholar

  • [16] Huisman J., Olff H. & Fresco L.F.M. 1993. A hierarchical set of models for species response analysis. J. Veg. Sci. 4: 37–46. http://dx.doi.org/10.2307/3235732CrossrefGoogle Scholar

  • [17] IUSS Working Group WRB 2006. World reference base for soil resources 2006. World Soil Resources Report No. 103. FAO, Rome, 128 pp. Google Scholar

  • [18] Janišová M., Uhliarová E., Hlásny T. & Turisová I. 2010. Vegetation-environment relationships in grassland communities of central Slovakia. Tuexenia 33: 423–444. Google Scholar

  • [19] Jurko A. 1986. Poznámky k diskusii o užitočnosti Ellenbergových indikačnýnh hodnôt. Biologia 41: 91–100. Google Scholar

  • [20] Jurko A. 1990. Ekologické a socioekonomické hodnotenie vegetácie. Príroda, Bratislava. Google Scholar

  • [21] Käfer J. & Witte J.P.M. 2004. Cover-weighted averaging of indicator values in vegetation analyses. J. Veg. Sci. 15: 647–652. http://dx.doi.org/10.1111/j.1654-1103.2004.tb02306.xCrossrefGoogle Scholar

  • [22] Klimeš L. 1987. Použití tabelovaných indikačních hodnot v gradientové analýze vegetace. Preslia 59: 15–24. Google Scholar

  • [23] Lawesson J.E. & Oksanen J. 2002. Niche characteristics of Danish woody species as derived from coenoclines. J. Veg. Sci. 13: 279–290. http://dx.doi.org/10.1111/j.1654-1103.2002.tb02048.xCrossrefGoogle Scholar

  • [24] Lawesson J.E., Fosaa A.M. & Olsen E. 2003. Calibration of Ellenberg indicator values for the Faroe Islands. Appl. Veg. Sci. 6: 53–62. http://dx.doi.org/10.1111/j.1654-109X.2003.tb00564.xCrossrefGoogle Scholar

  • [25] Lososová Z., Chytrý M., Cimalová Š., Kropáč Z., Otýpková Z., Pyšek P. & Tichý L. 2004. Weed vegetation of arable land in Central Europe: Gradients of diversity and species composition. J. Veg. Sci. 15: 415–422. http://dx.doi.org/10.1111/j.1654-1103.2004.tb02279.xCrossrefGoogle Scholar

  • [26] Marhold K. & Hindák F. (eds) 1998. Zoznam nižších a vyšších rastlín Slovenska. Veda, Bratislava. Google Scholar

  • [27] Mucina L. 1985. Používat’ či nepoužívat’ Ellenbergove indikačné hodnoty? Biologia 40: 511–516. Google Scholar

  • [28] Oksanen J. & Minchin P.R. 2002a. Continuum theory revisited: what shape are species responses along ecological gradients? Ecol. Model. 157: 119–129. http://dx.doi.org/10.1016/S0304-3800(02)00190-4CrossrefGoogle Scholar

  • [29] Oksanen J. & Minchin P.R. 2002b. Non-linear maximum likelihood estimation of Beta and HOF response models. Available at: http://cc.oulu.fi/~jarioksa/softhelp/hof3.pdf (Accessed on: February 2011) Google Scholar

  • [30] Pakeman R.J., Reid C.L., Lennon J.J. & Kent M. 2008. Possible interactions between environmental factors in determining species optima. J. Veg. Sci. 19: 201–208. http://dx.doi.org/10.3170/2007-8-18353CrossrefWeb of ScienceGoogle Scholar

  • [31] Peppler-Lisbach C. 2008. Using species-environmental amplitudes to predict pH values from vegetation. J. Veg. Sci. 19: 437–444. http://dx.doi.org/10.3170/2008-8-18394CrossrefWeb of ScienceGoogle Scholar

  • [32] Schaffers A.P. & Sykora K.V. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J. Veg. Sci. 11: 225–244. http://dx.doi.org/10.2307/3236802CrossrefGoogle Scholar

  • [33] Schröder H.K., Andersen H.E. & Kiehl K. 2005. Rejecting the mean: Estimating the response of fen plant species to environmental factors by non-linear quantile regression. J. Veg. Sci. 16: 373–382. http://dx.doi.org/10.1111/j.1654-1103.2005.tb02376.xCrossrefGoogle Scholar

  • [34] StatSoft Inc. 2003. STATISTICA, Version No. 6. www.StatSoft.com, StatSoft, Inc., Tulsa. Google Scholar

  • [35] ter Braak C.J.F. & Barendregt L.G. 1986. Weighted averaging of species indicator values: its efficiency in environmental calibration. Math. Biosci. 78: 57–72. http://dx.doi.org/10.1016/0025-5564(86)90031-3CrossrefGoogle Scholar

  • [36] ter Braak C.J.F. & Looman C.W.N. 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65: 3–11. http://dx.doi.org/10.1007/BF00032121CrossrefGoogle Scholar

  • [37] ter Braak C.J.F. & van Dam H. 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223. http://dx.doi.org/10.1007/BF00006028CrossrefGoogle Scholar

  • [38] Tichý L. 2002. JUICE, software for vegetation classification. J. Veg. Sci. 13: 451–453. http://dx.doi.org/10.1111/j.1654-1103.2002.tb02069.xCrossrefGoogle Scholar

  • [39] Uherčíková E. & Némethová D. 2006. The dynamics of Bodícka brána forest vegetation. Biologia 61: 421–431. http://dx.doi.org/10.2478/s11756-006-0072-2CrossrefGoogle Scholar

  • [40] USDA-NRCS-NSSC 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigation Report 42. Available at: http://soils.usda.gov/ (Accessed on: February 2011) Google Scholar

  • [41] Wamelink G.W.W., Goedhart P.W., Van Dobben H.F. & Berendse F. 2005. Plant species as predictors of soil pH: Replacing expert judgement with measurements. J. Veg. Sci. 16: 461–470. http://dx.doi.org/10.1111/j.1654-1103.2005.tb02386.xCrossrefGoogle Scholar

  • [42] Wamelink G.W.W., Joosten V., van Dobben H.F. & Berendse F. 2002. Validity of Ellenberg indicator values judged from physico-chemical field measurements. J. Veg. Sci. 13: 269–278. http://dx.doi.org/10.1111/j.1654-1103.2002.tb02047.xCrossrefGoogle Scholar

  • [43] Witte J.P.M. & von Asmuth J.R. 2003. Do we really need phytosociological classes to calibrate Ellenberg indicator values? J. Veg. Sci. 14: 615–618. http://dx.doi.org/10.1111/j.1654-1103.2003.tb02189.xCrossrefGoogle Scholar

About the article

Published Online: 2012-04-18

Published in Print: 2012-06-01

Citation Information: Biologia, Volume 67, Issue 3, Pages 474–482, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-012-0027-8.

Export Citation

© 2012 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Haben Blondeel, Michael P. Perring, Laurent Bergès, Jörg Brunet, Guillaume Decocq, Leen Depauw, Martin Diekmann, Dries Landuyt, Jaan Liira, Sybryn L. Maes, Margot Vanhellemont, Monika Wulf, and Kris Verheyen
Ecosystems, 2018
Dudu Duygu Kılıç, Hamdi Güray Kutbay, Burak Sürmen, and Rena Hüseyinoğlu
Rendiconti Lincei. Scienze Fisiche e Naturali, 2018
Dragana D. Jenačković, Ivana D. Zlatković, Dmitar V. Lakušić, and Vladimir N. Ranđelović
Aquatic Botany, 2016, Volume 134, Page 1
Benjamin Krause, Heike Culmsee, Karsten Wesche, and Christoph Leuschner
Folia Geobotanica, 2015, Volume 50, Number 3, Page 253
Tomasz H. Szymura, Magdalena Szymura, and Aurelia Macioł
Ecological Indicators, 2014, Volume 46, Page 495
Alica Dingová Košuthová and Jozef Šibík
Ecological Indicators, 2013, Volume 34, Page 246

Comments (0)

Please log in or register to comment.
Log in