Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 67, Issue 3


Anatomical differences of poplar (Populus × euramericana clone I-214) roots exposed to zinc excess

Miroslava Stoláriková
  • Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marek Vaculík
  • Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Lux
  • Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniela Baccio
  • BioLabs, Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, 33, I-56127, Pisa, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antonio Minnocci
  • BioLabs, Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, 33, I-56127, Pisa, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrea Andreucci / Luca Sebastiani
  • BioLabs, Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, 33, I-56127, Pisa, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-04-18 | DOI: https://doi.org/10.2478/s11756-012-0039-4


Poplar is one of the suitable candidates for phytoremediation due to extensive root system, fast growth rate, easy propagation and high biomass production. Zinc (Zn) is an essential element, but at high concentration becomes toxic to plants, similarly like cadmium (Cd). In order to evaluate the effect of Zn on root tissue development we conducted experiments with poplar (Populus × euramericana clone I-214) grown in hydroponics. Plants were treated with low (control) and excess level of Zn (1 mM). Changes in the development of apoplasmic barriers — Casparian bands and suberin lamellae in endodermis, as well as lignification of xylem vessels have been investigated. We found that both apoplasmic barriers developed closer to the root apex in higher Zn-treated root when compared with control root. Similar changes were observed in lignification of xylem vessels. For localization of Zn within root tissues, cryo-SEM/EDXMA analyses were used. Most of Zn was localized in the cortical tissues and four-time less Zn was determined in the inner part of the root below the endodermis. This indicates that endodermis serves as efficient barrier of apoplasmic Zn transport across the poplar root.

Keywords: apoplasmic barriers; Casparian band; phytoremediation; poplar; root anatomy; suberin lamellae; xylem development; zinc localization

  • [1] Broadley M.R., White P.J., Hammond J.P., Zelko I. & Lux A. 2007. Zinc in plants. New Phytol. 173: 677–702. http://dx.doi.org/10.1111/j.1469-8137.2007.01996.xCrossrefWeb of ScienceGoogle Scholar

  • [2] Brundrett M.C., Enstone D.E. & Peterson C.A. 1988. A berberine-aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue. Protoplasma 146: 133–142. http://dx.doi.org/10.1007/BF01405922CrossrefGoogle Scholar

  • [3] Brunner I., Luster J., Günthardt-Goerg M.S. & Frey B. 2008. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ. Pollut. 152: 559–568. http://dx.doi.org/10.1016/j.envpol.2007.07.006Web of ScienceCrossrefGoogle Scholar

  • [4] Chaney R.L., Angle J.S., Broadhurst C.L., Pezers C.A., Tappero R.V. & Sparks D.L. 2007. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J. Environ. Quality 36: 1429–1443. http://dx.doi.org/10.2134/jeq2006.0514CrossrefWeb of ScienceGoogle Scholar

  • [5] Di Baccio D., Minnocci A. & Sebastiani L. 2010. Leaf structural modifications in Populus × euramericana subjected to zinc excess. Biologia Plantarum 54: 502–508. http://dx.doi.org/10.1007/s10535-010-0088-xWeb of ScienceCrossrefGoogle Scholar

  • [6] Di Baccio D., Tognetti R., Minnocci A. & Sebastiani L. 2009. Responses of the Populus × euramericana clone I-214 to excess zinc: Carbon assimilation, structural modifications, metal distribution and cellular localization. Environ. Exp. Bot. 67: 153–163. http://dx.doi.org/10.1016/j.envexpbot.2009.05.014Web of ScienceCrossrefGoogle Scholar

  • [7] Di Baccio D., Tognetti R., Sebastiani L. & Vitagliano C. 2003. Responses of Populus deltoides × Populus nigra (Populus × euramericana) clone I-214 to high zinc concentrations. New Phytol. 159: 443–452. http://dx.doi.org/10.1046/j.1469-8137.2003.00818.xCrossrefGoogle Scholar

  • [8] Ďurčeková J., Mistrík I., Ollé M. & Tamás L. 2007. Cadmium induces premature xylogenesis in barley roots. Plant Soil 290: 61–68. http://dx.doi.org/10.1007/s11104-006-9111-6Web of ScienceCrossrefGoogle Scholar

  • [9] Enstone D.E. & Peterson C.A., Ma F.S. 2002. Root endodermis and exodermis: structure, function and responses to the environment. J Plant Growth Regul. 21: 335–351. http://dx.doi.org/10.1007/s00344-003-0002-2CrossrefGoogle Scholar

  • [10] Esau K. 1965. Plant Anatomy, 2nd Edition, John Wiley & Sons, Inc., New York, London, Sydney, 767 pp. Google Scholar

  • [11] Frey B. 2007. Botanical X-ray microanalysis in cryoscanning electron microscopy, pp. 529–541. In: Kuo J. (ed.), Electron Microscopy: Methods and Protocols Methods in Molecular Biology, Second ed., vol. 369. Humana Press Inc., Totowa, NJ. Google Scholar

  • [12] Hashemi A., Abdolzadeh A. & Sadeghipour H.R. 2010. Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Sci. Plant Nutr. 56: 244–253. http://dx.doi.org/10.1111/j.1747-0765.2009.00443.xCrossrefWeb of ScienceGoogle Scholar

  • [13] Karahara I., Ikeda A., Kondo T. & Uetake Y. 2004. Development of the Casparian strip in primary roots of maize under salt stress. Planta 219: 41–47. http://dx.doi.org/10.1007/s00425-004-1208-7CrossrefGoogle Scholar

  • [14] Krishnamurthy P., Ranathunge K., Franke R., Prakash H.S., Schreiber L. & Mathew M.K. 2009. The role of apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta 230: 119–134. http://dx.doi.org/10.1007/s00425-009-0930-6Web of ScienceCrossrefGoogle Scholar

  • [15] Lux A., Martinka M., Vaculík M. & White P.J. 2011. Root responses to cadmiumin the rhizosphere: a review. J. Exp. Bot. 62: 21–37. http://dx.doi.org/10.1093/jxb/erq281CrossrefGoogle Scholar

  • [16] Lux A., Morita S., Abe J. & Ito K. 2005. Improved method for clearing and staining free-hand sections and whole-mount samples. Ann. Bot. 96: 989–996. http://dx.doi.org/10.1093/aob/mci266CrossrefGoogle Scholar

  • [17] Lux A., Šottníková J. & Greger M. 2004. Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol. Plant. 120: 537–545. http://dx.doi.org/10.1111/j.0031-9317.2004.0275.xCrossrefGoogle Scholar

  • [18] Marschner H. 1995. Mineral Nutrition of Higher Plants. Academic Press, London, UK, 889 pp. Google Scholar

  • [19] Martinka M. & Lux A. 2004. Response of roots of three populations of Silene dioica to cadmium treatment. Biologia 59: 185–189. Google Scholar

  • [20] McCully M.E., Canny M.J., Huang C.X., Miller C. & Brink F. 2010. Cryo-scanning electron microscopy (CSEM) in the advancement of functional plant biology: energy dispersive Xray microanalysis (CEDX) applications. Funct. Plant Biol. 37: 1011–1040. http://dx.doi.org/10.1071/FP10095Web of ScienceCrossrefGoogle Scholar

  • [21] North G.B. & Nobel P.S. 1995. Hydraulic conductivity of concentric root tissues of Agave deserti Engelm. under wet and drying conditions. New Phytol. 130: 47–57. Google Scholar

  • [22] Pradhan S.P., Conrad J.R., Paterek J.R. & Srivastava V.J. 1998. Potential of phytoremediation for treatment of PAHs in soil at MGP sites. J. Soil Contam. 7: 467–480. Google Scholar

  • [23] Reinhardt D.H. & Rost T.L. 1995. Salinity accelerates endodermal development and induces an exodermis in cotton seedlings roots. Environ. Exp. Bot. 35: 563–574. http://dx.doi.org/10.1016/0098-8472(95)00015-1CrossrefGoogle Scholar

  • [24] Schreiber L. 2010. Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci. 15: 546–553. http://dx.doi.org/10.1016/j.tplants.2010.06.004Web of ScienceCrossrefGoogle Scholar

  • [25] Schutzendübel A., Schwanz P., Teichmann T., Gross, K., Langenfeld-Hayser R., Godbold D.L. & Polle A. 2001. Cadmiuminduced changes in antioxidative systems, H2O2 content and differentiation in pine (Pinus sylvestris) roots. Plant Physiol. 127: 887–898. http://dx.doi.org/10.1104/pp.010318CrossrefGoogle Scholar

  • [26] Sebastiani L., Scebba F. & Tognetti R. 2004. Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides×maximowiczii) and I-214 (P. euramericana) exposed to industrial waste. Environ. Exp. Bot. 52: 79–88. http://dx.doi.org/10.1016/j.envexpbot.2004.01.003CrossrefGoogle Scholar

  • [27] Tognetti R., Sebastiani L. & Minnocci A. 2004. Gas exchange and foliage characteristics of two poplar clones grown in soil amended with industrial waste. Tree Physiol. 24: 75–82. http://dx.doi.org/10.1093/treephys/24.1.75CrossrefGoogle Scholar

  • [28] Vaculík M., Lux A., Luxová M., Tanimoto E. & Lichtscheidl I. 2009. Silicon mitigates cadmium inhibitory effects in young maize plants. Environ. Exp. Bot. 67: 52–58. http://dx.doi.org/10.1016/j.envexpbot.2009.06.012Web of ScienceCrossrefGoogle Scholar

  • [29] Vaculík M., Konlechner C., Langer I., Adlassnig W., Puschenreiter M., Lux A. & Hauser M-T. 2012. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environ. Pollut. 163: 117–126. http://dx.doi.org/10.1016/j.envpol.2011.12.031CrossrefWeb of ScienceGoogle Scholar

  • [30] von Guttenberg H. 1968. Der primäre Bau der Angiospermenwurzel. Handbuch der Pflanzenanatomie. Gebrüder Borntraegern, Berlin, Stuttgart, 472 pp. Google Scholar

  • [31] Wiltse C.C., Rooney W.L., Chen Z., Schwab A.P. & Banks M.K. 1998. Greenhouse evaluation of agronomic and crude oil — phytoremediation potential among alfalfa genotypes. J. Environ. Quality 27: 169–173. http://dx.doi.org/10.2134/jeq1998.00472425002700010024xCrossrefGoogle Scholar

  • [32] Zelko I. & Lux. A. 2004. Effect of cadmium on Karwinskia humboldtiana roots. Biologia 59: 205–209. Google Scholar

About the article

Published Online: 2012-04-18

Published in Print: 2012-06-01

Citation Information: Biologia, Volume 67, Issue 3, Pages 483–489, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-012-0039-4.

Export Citation

© 2012 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xiaohan Xu, Baoshan Yang, Guanghua Qin, Hui Wang, Yidan Zhu, Kaizhen Zhang, and Hanqi Yang
Environmental Science and Pollution Research, 2019, Volume 26, Number 19, Page 19770
Andrea Ariani, Fabrizio Barozzi, Luca Sebastiani, Luigi Sanità di Toppi, Gian Pietro di Sansebastiano, and Andrea Andreucci
Plant Physiology and Biochemistry, 2018
Lorenzo Rossi, Weilan Zhang, Arthur P. Schwab, and Xingmao Ma
Environmental Science & Technology, 2017
V Iori, F Pietrini, D Bianconi, G Mughini, A Massacci, and M Zacchini
iForest - Biogeosciences and Forestry, 2017, Volume 10, Number 2, Page 416
Andrea Ariani, Daniela Di Baccio, Stefania Romeo, Lara Lombardi, Andrea Andreucci, Alexander Lux, David Stephen Horner, Luca Sebastiani, and Berthold Heinze
PLOS ONE, 2015, Volume 10, Number 2, Page e0117571
Miroslava Vaculíková, Marek Vaculík, Susan Tandy, Miroslava Luxová, and Rainer Schulin
Environmental and Experimental Botany, 2016, Volume 128, Page 11
Pierre Lucisine, Antoine Lecerf, Michaël Danger, Vincent Felten, Delphine Aran, Apolline Auclerc, Elisabeth M. Gross, Hermine Huot, Jean-Louis Morel, Serge Muller, Johanne Nahmani, and Florence Maunoury-Danger
Science of The Total Environment, 2015, Volume 537, Page 213
Lorenzo Rossi, Alessandra Francini, Antonio Minnocci, and Luca Sebastiani
Scientia Horticulturae, 2015, Volume 192, Page 38
Miroslava Stoláriková-Vaculíková, Stefania Romeo, Antonio Minnocci, Miroslava Luxová, Marek Vaculík, Alexander Lux, and Luca Sebastiani
Environmental and Experimental Botany, 2015, Volume 109, Page 235
Stefania Romeo, Dalila Trupiano, Andrea Ariani, Giovanni Renzone, Gabriella S. Scippa, Andrea Scaloni, and Luca Sebastiani
Journal of Plant Physiology, 2014, Volume 171, Number 12, Page 1054
Claudia Cocozza, Domenico Vitullo, Giuseppe Lima, Lucia Maiuro, Marco Marchetti, and Roberto Tognetti
Environmental Science and Pollution Research, 2014, Volume 21, Number 3, Page 1796
Xiao-ming Wan, Mei Lei, Tong-bin Chen, Guang-dong Zhou, Jun Yang, Xiao-yong Zhou, Xi Zhang, and Rui-xiang Xu
Environmental Science and Pollution Research, 2014, Volume 21, Number 1, Page 325
R Tognetti, C Cocozza, and M Marchetti
iForest - Biogeosciences and Forestry, 2013, Volume 6, Number 1, Page 37

Comments (0)

Please log in or register to comment.
Log in