Jump to ContentJump to Main Navigation
Show Summary Details
More options …


12 Issues per year

See all formats and pricing
More options …
Volume 67, Issue 3


Philopatry analysis of the great reed warbler (Acrocephalus arundinaceus) based on ringing data in Europe

Norbert Mátrai / József Gyurácz / Mihály Lenczl / Gyula Hoffmann / Gábor Bakonyi / Róbert Mátics
  • Department of Pathophysiology and Gerontology, University of Pécs, H-7643, Szigeti Rd. 12., 7643, Pécs, Hungary
  • Hungarian Nature Research Society (HuNaReS), H-8448, Ajka, Vadvirág u. 5., Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-04-18 | DOI: https://doi.org/10.2478/s11756-012-0043-8


Ringing databases of the EURING Data Bank and the Hungarian Bird Ringing Centre were analysed in order to investigate the philopatry of the great reed warbler (Acrocephalus arundinaceus) in three European regions. The aim of the study was to find out if there are continent-scale geographic trends in philopatry with respect to the age of the birds. Three clusters were assigned according to their geographic positions: (i) southern part of Europe (Region 1: between 36°–43° latitudes), (ii) middle part of Europe (Region 2: between 43°–49° latitudes) and (iii) northern part of Europe, (Region 3: between 49°–56° latitudes). No significant differences were found between the natal and breeding philopatry in any Regions, except Region 3. The birds ringed as adults in Region 3 were less faithful to their breeding site than those of the other two regions. Natal philopatry of juveniles did not differ between Region 1 and Region 2, but both of them differed in this respect from Region 3. A method for choosing appropriate breeding periods in philopatry studies is also proposed.

Keywords: great reed warbler; Acrocephalus arundinaceus; natal- and breeding philopatry

  • [1] Bensch S. & Hasselquist D. 1991. Territory infidelity in the polygynous great reed warblers Acrocephalus arundinaceus: The effect of variation in territory attractiveness. J. Anim. Ecol. 60: 857–871. DOI: 10.2307/5418 http://dx.doi.org/10.2307/5418CrossrefGoogle Scholar

  • [2] Bensch S., Hasselquist D., Nielsen B. & Hansson B. 1998. Higher fitness for philopatric than for immigrant males in a semiisolated population of Great Reed Warblers. Evolution 52(3): 877–889. DOI: 10.2307/2411282 http://dx.doi.org/10.2307/2411282CrossrefGoogle Scholar

  • [3] Bosschieter L., Goedhart P.W., Foppen R.P.B. & Vos C.C. 2010. Modelling small scale dispersal of the Great reed Warbler Acrocephalus arundinaceus in a fragmented landscape. Ardea 98(3): 383–394. DOI: 10.5253/078.098.0312 http://dx.doi.org/10.5253/078.098.0312Web of ScienceCrossrefGoogle Scholar

  • [4] Cramp S. & Duncan J.B. (eds) 1992. Handbook of the birds of Europe, the Middle East and North Africa.The birds of the Western Paleartic. Vol. VI. Oxford University Press, New York, 736 pp. ISBN: 0198575092 Google Scholar

  • [5] Fischer S. & Haupt H. 1994. Ansiedlerstreuung, Alter und Zugwege ostdeutscher Drosselrohrsänger (Acrocephalus arundinaceus) — eine Ringfundanalyse. Vogelwarte 37: 183–189. Google Scholar

  • [6] Forstmeier W. & Leisler B. 2004. Repertoire size, sexual selection, and offspring viability in the great reed warbler: changing patterns in space and time. Behav. Ecol. 15(4): 555–563. DOI: 10.1093/beheco/arh051 http://dx.doi.org/10.1093/beheco/arh051CrossrefGoogle Scholar

  • [7] Greenwood P.J. 1980. Mating system, philopatry and dispersal in birds and mammals. Anim. Behav. 28(4): 1140–1162. DOI: 10.1016/S0003-3472(80)80103-5 http://dx.doi.org/10.1016/S0003-3472(80)80103-5CrossrefGoogle Scholar

  • [8] Hansson B., Bensch S. & Hasselquist D. 2003a. A new approach to study dispersal: immigration of novel alleles reveals femalebiased dispersal in great reed warblers. Molec. Ecol. 12(3): 631–637. DOI: 10.1046/j.1365-294X.2003.01772.x http://dx.doi.org/10.1046/j.1365-294X.2003.01772.xCrossrefGoogle Scholar

  • [9] Hansson B., Bensch S. & Hasselquist D. 2003b. Heritability of dispersal in the great reed warbler. Ecol. Lett. 6(4): 290–294. DOI: 10.1046/j.1461-0248.2003.00436.x http://dx.doi.org/10.1046/j.1461-0248.2003.00436.xCrossrefGoogle Scholar

  • [10] Hansson B., Bensch S. & Hasselquist D. 2004. Lifetime fitness of short- and long distance dispersing Great reed Warblers. Evolution 58(11): 2546–2557. DOI: 10.1111/j.0014-3820.2004.tb00883.x CrossrefGoogle Scholar

  • [11] Hansson B., Bensch S., Hasselquist D. & Åkesson M. 2001. Microsatellite diversity predicts recruitment of sibling great reed warblers. Proc. Roy. Soc. B 268(1473): 1287–1291. DOI: 10.1098/rspb.2001.1640 http://dx.doi.org/10.1098/rspb.2001.1640CrossrefGoogle Scholar

  • [12] Hansson B., Bensch S., Hasselquist D. & Nielsen B. 2002. Restricted dispersal in a long-distance migrant bird with patchy distribution, the great reed warbler. Oecologia 130(4): 536–542. DOI: 10.1007/s00442-001-0831-2 http://dx.doi.org/10.1007/s00442-001-0831-2CrossrefGoogle Scholar

  • [13] Hansson B., Hasselquist D., Lillandt B.G., Wennerberg L. & Schantz T. von. 2000. Increase of genetic variation over time in a recently founded population of great reed warblers (Acrocephalus arundinaceus) revealed by microsatellites and DNA fingerprinting. Molec. Ecol. 9(10): 1529–1538. DOI: 10.1046/j.1365-294x.2000.01028.x http://dx.doi.org/10.1046/j.1365-294x.2000.01028.xCrossrefGoogle Scholar

  • [14] Hasselquist D. 1998. Polygyny in the great reed warbler: a long term study of factors contributing to male fitness. Ecology 79(7): 2376–2390. DOI: 10.1890/0012-9658(1998)079[2376:PIGRWA]2.0.CO;2 http://dx.doi.org/10.1890/0012-9658(1998)079[2376:PIGRWA]2.0.CO;2CrossrefGoogle Scholar

  • [15] Hasselquist D., Bensch S. & Schantz T. von 1995. Low frequency of extra-pair paternity in the polygynous great reed warbler. Behav. Ecol. 6(1): 27–38. DOI: 10.1093/beheco/6.1.27 http://dx.doi.org/10.1093/beheco/6.1.27CrossrefGoogle Scholar

  • [16] Hasselquist D., Bensch S. & Schantz T. von 1996. Correlation between male song repertoire, extra-pair paternity and offspring survival in the Great reed Warbler. Nature 381(6579): 229–232. DOI: 10.1038/381229a0 http://dx.doi.org/10.1038/381229a0CrossrefGoogle Scholar

  • [17] Moskát C., Hansson B., Barabás L., Bártol I. & Karcza Z. 2008. Common cuckoo Cuculus canorus parasitism, antiparasite defence and gene flow in closely located populations of Great reed Warblers Acrocephalus arundinaceus. J. Avian Biol. 39(6): 663–671. DOI: 10.1111/j.1600-048X.2008.04359.x http://dx.doi.org/10.1111/j.1600-048X.2008.04359.xWeb of ScienceCrossrefGoogle Scholar

  • [18] Paradis E., Baillie S.R., Sutherlans W.J. & Gregory R.D 1998. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67(4): 518–536. DOI: 10.1046/j.1365-2656.1998.00215.x http://dx.doi.org/10.1046/j.1365-2656.1998.00215.xCrossrefGoogle Scholar

  • [19] Procházka P. & Reif J. 2000. Analysis of ringing recoveries of Great reed Warblers (Acrocephalus arundinaceus) ringed or recovered in the Czech Republic and Slovakia. Sylvia 36(2): 91–105. Google Scholar

  • [20] Ronce O., Olivieri I., Clobert J. & Danchin E. 2001. Perspectives on the study of dispersal evolution, Perspectives for the study of dispersal evolution. Chapter 24, pp. 341–357. In: Clobert J., Danchin E., Dhondt A.A. & Nichols J.D. (eds), Dispersal, Oxford University Press, Oxford, 480 pp. ISBN-10: 0198506597, ISBN-13: 9780198506591 Google Scholar

  • [21] Slatkin M. 1985. Rare alleles as indicators of gene flow. Evolution 39(1): 53–65. http://dx.doi.org/10.2307/2408516Google Scholar

  • [22] Vadász C., Német á., Karcza Z., Loránt M., Biró C. & Csörgő T. 2008. Study on breeding site fidelity of Acrocephalus warblers in Central Hungary. Acta Zool. Acad. Sci. Hung.54(Suppl. 1): 167–175. Google Scholar

  • [23] Węgrzyn E., Leniowski K. & Osiejuk T.S. 2010. Whistle duration and consistency reflect philopatry and harem size in great reed warblers. Anim. Behav. 79(6): 1363–1372. DOI: 10.1016/j.anbehav.2010.03.012 http://dx.doi.org/10.1016/j.anbehav.2010.03.012CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2012-04-18

Published in Print: 2012-06-01

Citation Information: Biologia, Volume 67, Issue 3, Pages 596–601, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-012-0043-8.

Export Citation

© 2012 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Thomas Oliver Mérő, Antun Žuljević, Katalin Varga, and Szabolcs Lengyel
The Condor, 2018, Volume 120, Number 1, Page 94
Johanna S. U. Hedlund, Frida Sjösten, Kristaps Sokolovskis, and Sven Jakobsson
Journal of Avian Biology, 2017, Volume 48, Number 3, Page 399

Comments (0)

Please log in or register to comment.
Log in