Jump to ContentJump to Main Navigation
Show Summary Details

Biologia


IMPACT FACTOR 2015: 0.719
5-year IMPACT FACTOR: 0.740

SCImago Journal Rank (SJR) 2015: 0.322
Source Normalized Impact per Paper (SNIP) 2015: 0.510
Impact per Publication (IPP) 2015: 0.786

Online
ISSN
1336-9563
See all formats and pricing



Select Volume and Issue

Issues

Transpiration and stomatal conductance of mistletoe (Loranthus europaeus) and its host plant, downy oak (Quercus pubescens)

1Department of Forest Botany, Dendrology and Geobiocenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědelská 3, CZ-61300, Brno, Czech Republic

© 2012 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Biologia. Volume 67, Issue 5, Pages 917–926, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-012-0080-3, August 2012

Publication History

Published Online:
2012-08-23

Abstract

Sap flow rate was measured in the crown of a solitary specimen of downy oak (Quercus pubescens) infested by mistletoe (Loranthus europaeus). Five oak branches and two mistletoe plants were selected for analysis. The seasonal sum of transpired water expressed per leaf area unit was five times higher in the mistletoe than in the oak. In addition, the diurnal curves of sap flow were different between the plants. In the morning, the sap flow measured in the mistletoe lagged one hour behind the sap flow measured in an oak branch unencumbered by mistletoe. In contrast, no time lag was observed in the evening. The proportion of water transpired at night relative to the total transpiration was 7% in both species. The stomatal conductances derived from the inverted Penman-Monteith equation and their dependence on global radiation and the vapour pressure deficit (D) revealed that D exerts a different behaviour in stomatal control of transpiration in the mistletoe. We also determined that the concentration of calcium in the leaf mass could serve as a proxy for transpiration rate, however the relationship was not proportional.

Keywords: sap flow; Penman-Monteith; hemiparasitic plant; nighttime transpiration; calcium concentration

  • [1] Addington R., Mitchell R., Oren R. & Donovan L. 2004. Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris. Tree Physiol. 24: 561–569. http://dx.doi.org/10.1093/treephys/24.5.561 [Crossref]

  • [2] Allen R.G., Pereira L.S., Raes D. & Smith M. 1998. Crop evapotranspiration — Guidelines for computing crop water requirements — FAO Irrigation and drainage paper 56. FAO, Rome 300.

  • [3] Aphalo P. & Jarvis P. 1991. Do stomata respond to relative humidity? Plant, Cell Environ. 14: 127–132. http://dx.doi.org/10.1111/j.1365-3040.1991.tb01379.x [Crossref]

  • [4] Bowie M. 2004. Water and nutrient status of the mistletoe Plicosepalus acaciae parasitic on isolated Negev Desert populations of Acacia raddiana differing in level of mortality. J. Arid Environ. 56: 487–508. http://dx.doi.org/10.1016/S0140-1963(03)00067-3 [Crossref]

  • [5] Buchleitner E. 1982. Mikroskopische Untersuchungen über die Anatomie des Haustoriums und die Keimung der Eichenmistel (Loranthus europaeus). Diss. Univ. Bodenkultur. Vienna.

  • [6] Buckley T.N. 2005. The control of stomata by water balance. New Phytol. 168: 275–92. http://dx.doi.org/10.1111/j.1469-8137.2005.01543.x [Crossref]

  • [7] Caird M., Richards J. & Donovan L. 2007. Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiol. 143: 4–10. http://dx.doi.org/10.1104/pp.106.092940 [Crossref]

  • [8] Cienciala E., Kučera J., Lindroth A., Čermák J., Grelle A. & Halldin S. 1997. Canopy transpiration from a boreal forest in Sweden during a dry year. Agr. Forest Meteorol. 86: 157–167. http://dx.doi.org/10.1016/S0168-1923(97)00026-9 [Crossref]

  • [9] Cohen A.C. 1969. A generalization of the Weibull distribution. Marshall Space Flight Center, NASA Contractor Report Number 61293, Contract NAS 8-11175.

  • [10] Čermák J., Kučera J. & Nadezhdina N. 2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, Struct. Funct. 18: 529–546. http://dx.doi.org/10.1007/s00468-004-0339-6 [Crossref]

  • [11] Eliáš P. 1987. Chlorophyl content in leaves of a mistletoeLoranthus europaeus Jacq.), pp 171–173. In: Weber H.Ch. & Forstreuter W. (eds), Parasitic flowering plants, Marburg.

  • [12] Escher P., Eiblmeier M., Hetzger I. & Rennenberg H. 2004. Seasonal and spatial variation of carbohydrates in mistletoes (Viscum album) and the xylem sap of its hosts (Populus x euamericana and Abies alba). Physiol. Plant. 120: 212–219. http://dx.doi.org/10.1111/j.0031-9317.2004.0230.x [Crossref]

  • [13] Fink S. 1991. Unusual patterns in the distribution of calcium oxalate in spruce needles and their possible relationships to the impact of pollutants. New Phytol. 119: 41–51. http://dx.doi.org/10.1111/j.1469-8137.1991.tb01006.x [Crossref]

  • [14] Fischer J. 1983. Water relations of mistletoes and their hosts, pp 161–181. In: Calder M. & Bernhardt P. (eds), The Biology of Mistletoes. Academic Press, New York.

  • [15] Garkoti S., Akoijam S. & Singh S. 2002. Ecology of water relations between mistletoe (Taxilus vestitus) and its host oak (Quercus floribunda). Tropical Ecology 43: 243–249.

  • [16] Glatzel G. 1983. Mineral nutrition and water relations of hemiparasitic mistletoes: a question of partitioning. Experiments with Loranthus europaeus on Quercus petraea and Quercus robur. Oecologia 56: 193–201. http://dx.doi.org/10.1007/BF00379691 [Crossref]

  • [17] Glatzel G. & Geils B.W. 2009. Mistletoe ecophysiology: hostparasite interactions. Botany 87: 10–15. http://dx.doi.org/10.1139/B08-096 [Crossref]

  • [18] Grantz D. 1990. Plant response to humidity. Plant, Cell Environ. 13: 667–679. http://dx.doi.org/10.1111/j.1365-3040.1990.tb01082.x [Crossref]

  • [19] Grace J. 1983. Plant-atmosphere relationships. Chapman and Hall, 71 pp.

  • [20] Guidi W., Piccioni E. & Bonari E. 2008. Evapotranspiration and crop coefficient of poplar and willow short-rotation coppice used as vegetation filter. Bioresource Technol. 99: 4832–40. http://dx.doi.org/10.1016/j.biortech.2007.09.055 [Crossref]

  • [21] Halldin S. 1989. The Lohammar equation for stomatal and surface conductance, pp. 97–100. In: Price J.C. (ed.), Proceedings of the Workshop on Stomatal Resistance Formulation and its Application to Modeling of Transpiration. Pennsylvania State University, College of Earth and Mineral Sciences.

  • [22] Hellmuth E.O. 1971. Eco-physiological studies on plants in arid and semi-arid regions in Western Australia: IV. Comparison of the field physiology of the host, Acacia grasbyi and its hemiparasite, Amyema nestor under optimal and stress conditions. J. Ecol. 59: 351–363. http://dx.doi.org/10.2307/2258317 [Crossref]

  • [23] Igawa M., Kase T., Stake K. & Okochi H. 2002. Severe leaching of calcium ions from fir needles caused by acid fog. Environ. Pollut. 119: 375–382. http://dx.doi.org/10.1016/S0269-7491(01)00342-6 [Crossref]

  • [24] Kang S., Hu X., Du T., Zhang J. & Jerie P. 2003. Transpiration coefficient and ratio of transpiration to evapotranspiration of pear tree (Pyrus communis L.) under alternative partial root-zone drying conditions. Hydrol. Process. 17: 1165–1176. http://dx.doi.org/10.1002/hyp.1188 [Crossref]

  • [25] Kavanagh K.L., Pangle R. & Schotzko A.D. 2007. Nocturnal transpiration causing disequilibrium between soil and stem predawn water potential in mixed conifer forests of Idaho. Tree Physiol. 27: 621–9. http://dx.doi.org/10.1093/treephys/27.4.621 [Crossref]

  • [26] Kubíěk J., Špinlerová Z. & Gebauer R. 2008. Loranthus europaeus Jacq. Bull. of the Czech Bot. Soc. 43: 313–314.

  • [27] Kumbasli M., Keten A., Beskardes V., Makineci E., Özdemir E., Yilmaz E., Zengin H., Sevgi O., Yilmaz H.C. & Caliskan S. 2011. Hosts and distribution of yellow mistletoe (Loranthus europaeus Jacq.(Loranthaceae)) on Northern Strandjas Oak Forests-Turkey. Sci. Res. Essays 6: 2970–2975.

  • [28] Küppers M., Küppers B. & Swank A. 1992. Leaf conductance and xylem pressures of the host/mistletoe pair Eucalyptus behriana F. Muell and Amyema miquelii (Lehm. Ex Miq) Teigh at permanently low plant water status in the fiels. Trees-Struct. Funct. 7: 8–11.

  • [29] Lohammar T., Larsson S., Linder S. & Falk S. 1980. FAST: Simulation models of gaseous exchange in Scots pine. Ecological Bulletins 32: 505–523.

  • [30] Marschner H. 1974. Calcium nutrition of higher plants. Netherl. J. Agric. Sci. 22: 275–282.

  • [31] Martínez-Vilalta J., Cochard H., Mencuccini M., Sterck F., Herrero A., Korhonen J.F.J., Llorens P., Nikinmaa E., Nolč A., Poyatos R., Ripullone F., Sass-Klaassen U. & Zweifel R. 2009. Hydraulic adjustment of Scots pine across Europe. New Phytol. 184: 353–64. http://dx.doi.org/10.1111/j.1469-8137.2009.02954.x [Crossref]

  • [32] Mecklenburg R. & Tukey H.J. 1963. Influence of Foliar Leaching on Root Uptake and Translocation of Calcium-45 to the Stems and Foliage of Phaseolus vulgaris. Plant Physiol. 39: 533–536. http://dx.doi.org/10.1104/pp.39.4.533 [Crossref]

  • [33] Monteith J.L. 1965. Evaporation and environment. Symp. Soc. Exp. Biol. 19: 205–234.

  • [34] Monteith J.L. 1995. A reinterpretation of stomatal responses to humidity. Plant, Cell Environ. 18: 357–364. http://dx.doi.org/10.1111/j.1365-3040.1995.tb00371.x [Crossref]

  • [35] Mott K. & Parkhust D. 1991. Stomatal response to humidity in air and in helox. Plant, Cell Environ. 14: 509–515. http://dx.doi.org/10.1111/j.1365-3040.1991.tb01521.x [Crossref]

  • [36] Nadezhdina N., Čermák J. & Nadezhdin V. 1998. Heat field deformation method for sap flow measurements, pp. 72–92. In: Proc. 4th. International Workshop on Measuring Sap Flow in Intact Plants. IUFRO Publ. Publ. house of Mendel Univ.Brno, Židlochovice.

  • [37] Nadezhdina N., Ferreira M.I., Silva R. & Pacheco C.A. 2007. Seasonal variation of water uptake of a Quercus suber tree in Central Portugal. Plant Soil 305: 105–119. http://dx.doi.org/10.1007/s11104-007-9398-y [Crossref]

  • [38] Oren R., Sperry J., Ewers B., Pataki D.E., Phillips N. & Megonigal J. 2001. Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: hydraulic and non-hydraulic effects. Oecologia 126: 21–29. http://dx.doi.org/10.1007/s004420000497 [Crossref]

  • [39] Paço T.A., David T.S., Henriques M.O., Pereira J.S., Valente F., Banza J., Pereira F.L., Pinto C. & David J.S. 2009. Evapotranspiration from a Mediterranean evergreen oak savannah: The role of trees and pasture. J. Hydrol. 369: 98–106. http://dx.doi.org/10.1016/j.jhydrol.2009.02.011 [Crossref]

  • [40] Penman H.L. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 193: 120–145. http://dx.doi.org/10.1098/rspa.1948.0037 [Crossref]

  • [41] Potter C., Ragsdale H. & Swank W. 1991. Atmospheric deposition and foliar leaching in a regenerating southern Appalachian forest canopy. J. Ecol. 79: 97–115. http://dx.doi.org/10.2307/2260786 [Crossref]

  • [42] Quitt E. 1971. Climatic regions of the Czechoslovakia. Academia, Praha. (In Czech)

  • [43] Romanovsky M.G. & Mamaev V.V. 2002. Gruntovye vody nagornyh dubrav Tallermanovskogo lesa. Lesovedenie 5: 11–16. (In Russian)

  • [44] Sala A., Carey E.V. & Callaway R.M. 2001. Dwarf mistletoe affects whole-tree water relations of Douglas fir and western larch primarily through changes in leaf to sapwood ratios. Oecologia 126: 42–52. http://dx.doi.org/10.1007/s004420000503 [Crossref]

  • [45] Schulze E.D., Turner N.C. & Glatzel G. 1984. Carbon, water and nutrient relations of two mistletoes and their hosts: A hypothesis. Plant, Cell Environ. 7: 293–299.

  • [46] Shimazaki K., Doi M., Assmann S.M. & Kinoshita T. 2007. Light regulation of stomatal movement. Annu. Rev. Plant Biol. 58: 219–47. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105434 [Crossref]

  • [47] Steppe K., De Pauw D.J.W., Doody T.M. & Teskey R.O. 2010. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agric. Forest Meteorol. 150: 1046–1056. http://dx.doi.org/10.1016/j.agrformet.2010.04.004 [Crossref]

  • [48] Strong G.L. & Bannister P. 2002. Water relations of temperate mistletoes on various hosts. Funct. Plant Biol. 29: 89–96. http://dx.doi.org/10.1071/PP00159 [Crossref]

  • [49] Tatarinov F., Urban J. & Čermák J. 2008. Application of “clump technique” for root system studies of Quercus robur and Fraxinus excelsior. Forest Ecol. Managem. 255: 495–505 http://dx.doi.org/10.1016/j.foreco.2007.09.022 [Crossref]

  • [50] Těšitel J., Plavcová L. & Cameron D.D. 2010. Interactions between hemiparasitic plants and their hosts: the importance of organic carbon transfer. Plant Signal. Behavior 5: 1072–6 http://dx.doi.org/10.4161/psb.5.9.12563 [Crossref]

  • [51] Türe C., Böcük H. & Aşan Z. 2010. Nutritional relationships between hemi-parasitic mistletoe and some of its deciduous hosts in different habitats. Biologia 65: 859–867. http://dx.doi.org/10.2478/s11756-010-0088-5 [Crossref]

  • [52] Ullmann I., Lange O.L., Ziegler H., Ehleringer J., Schulze E.D. & Cowan I.R. 1985. Diurnal courses of leaf conductance and transpiration of mistletoes and their hosts in Central Australia. Oecologia 67: 577–587. http://dx.doi.org/10.1007/BF00790030 [Crossref]

  • [53] Vandenberghe J. & Czudek T. 2008. Pleistocene cryopediments on variable terrain. Permafrost Periglac. Proces. 83: 71–83. http://dx.doi.org/10.1002/ppp.605 [Crossref]

  • [54] Vareschi V. & Pannier F. 1953. Über den Wasserhaushalt tropischer Loranthaceen am natürlichen Standort. Phyton 5: 140–152.

  • [55] Ward E.J., Oren R., Sigurdsson B.D., Jarvis P.G. & Linder S. 2008. Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees. Tree Physiol. 28: 579–596. http://dx.doi.org/10.1093/treephys/28.4.579 [Crossref]

  • [56] Zeide B. 1993. Analysis of growth equations. Forest Sci. 3: 594–616.

  • [57] Ziegler H., Weber J. & Lüttge U.E. 2009. Thermal dissipation probe measurements of sap flow in the xylem of trees documenting dynamic relations to variable transpiration given by instantaneous weather changes and the activities of a mistletoe xylem parasite. Trees 23: 441–450. http://dx.doi.org/10.1007/s00468-009-0332-1 [Crossref]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Quang-Vuong Le, Kushan U. Tennakoon, Faizah Metali, Linda B. L. Lim, and Jay F. Bolin
Nordic Journal of Botany, 2014, Page n/a
[3]
Roman Gebauer, Daniel Volařík, Josef Urban, Isabella Børja, Nina Elisabeth Nagy, Toril Drabløs Eldhuset, and Paal Krokene
European Journal of Forest Research, 2014, Volume 133, Number 1, Page 111

Comments (0)

Please log in or register to comment.