Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 67, Issue 5


Isolation and characterization of heavy metal tolerant Gram-positive bacteria with bioremedial properties from municipal waste rich soil of Kestopur canal (Kolkata), West Bengal, India

Kamala Gupta / Chitrita Chatterjee
  • Department of Biotechnology, Molecular Biology Laboratory, Presidency University, 86/1 College Street, West Bengal, Kolkata, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bhaskar Gupta
  • Department of Biotechnology, Molecular Biology Laboratory, Presidency University, 86/1 College Street, West Bengal, Kolkata, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-08-23 | DOI: https://doi.org/10.2478/s11756-012-0099-5


The present study was conducted to determine the culturable bacterial profile from Kestopur canal (Kolkata, India) and analyze their heavy metal tolerance. In addition to daily sewage including solid and soluble wastes, a considerable load of toxic metals are released into this water body from industries, tanneries and agriculture, household as well as health sectors. Screening out microbes from such an environment was done keeping in mind their multifunctional application especially for bioremediation. Heavy metals are major environmental pollutants when present in high concentration in soil and show potential toxic effects on growth and development in plants and animals. Some edible herbs growing in the canal vicinity, and consumed by people, were found to harbour these heavy metals at sub-toxic levels. The bioconcentration factor of these plants being <1 indicates that they probably only absorb but not accumulate heavy metals. All the thirteen Grampositive bacteria isolated from these plants rhizosphere were found to tolerate high concentration of heavy metals like Co, Ni, Pb, Cr, Fe. Phylogenetic analysis of their 16S rDNA genes revealed that they belonged to one main taxonomic group — the Firmicutes. Seven of them were found to be novel with 92–95% sequence homology with known bacterial strains. Further microbiological analyses show that the alkaliphilic Bacillus weihenstephanensis strain IA1 and Exiguobacterium aestuarii strain CE1, with selective antibiotic sensitivity along with high Ni2+ and Cr6+ removal capabilities, respectively, can be prospective candidates for bioremediation.

Keywords: antibiotic resistance; biochemical assay; growth curve; heavy metal tolerance; pH tolerance; 16S rDNAr

  • [1] Abou-Shanab R.A., Angle J.S., Delorme T.A., Chaney R.L., Berkum V.P., Moawad H., Ghanem K. & Ghozlan H.A. 2003. Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol. 158: 219–224. http://dx.doi.org/10.1046/j.1469-8137.2003.00721.xCrossrefGoogle Scholar

  • [2] Adarsh V.K., Mishra M., Chowdhury S., Sudarshan M., Thakur A.R. & Ray Chaudhuri S. 2007. Studies on metal microbe interaction of three bacterial isolates from east Calcutta wetland. Online J. Biol. Sci. 7: 80–88. http://dx.doi.org/10.3844/ojbsci.2007.80.88CrossrefGoogle Scholar

  • [3] Alam M.Z. & Malik A. 2008. Chromate resistance, transport and bioreduction by Exiguobacterium sp. ZM-2 isolated from agricultural soil irrigated with tannery effluent. J. Basic Microbiol. 48: 416–420. http://dx.doi.org/10.1002/jobm.200800046CrossrefGoogle Scholar

  • [4] Aleem A., Isar J. & Malik A. 2003. Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil. Bioresour. Technol. 86: 7–13. http://dx.doi.org/10.1016/S0960-8524(02)00134-7CrossrefGoogle Scholar

  • [5] Al-Jassir M.S, Shaker A. & Khaliq M.A. 2005. Deposition of heavy metals on green leafy vegetables sold on roadsides of Riyadh city, Saudi Arabia. Bull. Environ. Contam. Toxicol. 75: 1020–1027. http://dx.doi.org/10.1007/s00128-005-0851-4CrossrefGoogle Scholar

  • [6] Al-Saleh I., Mustafa A., Dufour I., Taylor A. & Hiton R. 1996. Lead exposure in the city of Arar, Saudi Arabia. Arch. Environ. Health 51: 73–82. http://dx.doi.org/10.1080/00039896.1996.9935997CrossrefGoogle Scholar

  • [7] Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J Mol. Biol. 215: 403–410. CrossrefGoogle Scholar

  • [8] Awashthi S.K. 2000. Prevention of Food Adulteration Act No. 37 of 1954. Central and State rules as amended for 1999, 3rd Edn, Ashoka Law House, New Delhi. Google Scholar

  • [9] Benson D.A., Karsch-Mizrachi I., Clark K., Lipman D.J., Ostell J. & Sayers E.W. 2012. Nucleic Acids Res. 40 (Database Issue): D48–D53. http://dx.doi.org/10.1093/nar/gkr1202CrossrefGoogle Scholar

  • [10] Burd G.I, Dixon D.G. & Glick B.R. 1998. A plant growth promoting bacterium that decreases nickel toxicity in plant seedlings. Appl. Environ. Microbiol. 64: 3663–3668. Google Scholar

  • [11] Chovanová K., Sládeková D., Kmeť V., Prokšová M., Harichová J., Puškárová A., Polek B. & Ferianc P. 2004. Identification and characterization of eight cadmium resistant bacterial isolates from a cadmium-contaminated sewage sludge. Biologia 59: 817–827 Google Scholar

  • [12] Colak F., Atar N., Yazıcıoglu D. & Olgun A. 2011. Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chem. Eng. J. 173: 422–428. http://dx.doi.org/10.1016/j.cej.2011.07.084CrossrefGoogle Scholar

  • [13] Congeevaram S., Dhanarani S., Park J., Michael D. & Kaliannan T. 2007. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mater. 146: 270–277. http://dx.doi.org/10.1016/j.jhazmat.2006.12.017CrossrefGoogle Scholar

  • [14] Crapart S., Fardeau M.L., Cayol J.L., Thomas P., Sery C, Ollivier B. & Combet-Blanc Y. 2007. Exiguobacterium profundum sp nov. a moderately thermophilic, lactic acid-producing bacterium isolated from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 57: 287–292. http://dx.doi.org/10.1099/ijs.0.64639-0CrossrefGoogle Scholar

  • [15] Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. http://dx.doi.org/10.2307/2408678CrossrefGoogle Scholar

  • [16] Hasan S., Hashim M. A. & Gupta B.S. 2000. Adsorption of NiSO4 on Malaysian rubber-wood ash. Biores. Technol. 72: 153–158. http://dx.doi.org/10.1016/S0960-8524(99)00101-7CrossrefGoogle Scholar

  • [17] Huang Y., Tao S. & Chen Y.J. 2005. The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil. J. Environ. Sci. 17: 276–280. Google Scholar

  • [18] Islam E.U., Yang X., He Z. & Mahnmood Q. 2007. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crocks. J. Zhejiang Univ. Sci. 8: 1–13. CrossrefGoogle Scholar

  • [19] Kabata-Pendias A. & Pendias H. 1992. Trace Metals in Soils and Plants. CRC Press, Boca Raton, FL, 365 pp. Google Scholar

  • [20] Karelová E., Harichová J., Stojnev T., Pangallo D.& Ferianc P. 2011. The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metalcontaminated site. Biologia 66: 18–26 http://dx.doi.org/10.2478/s11756-010-0145-0CrossrefGoogle Scholar

  • [21] Kashem M.A. & Singh B.R. 1999. Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh. Water Air Soil Pollut. 115: 347–361. http://dx.doi.org/10.1023/A:1005193207319CrossrefGoogle Scholar

  • [22] Khairiah J., Zalifah M.K., Yin Y.H. & Aminah A. 2004. The uptake of heavy metals by fruit type vegetables grown in selected agricultural areas. Pak. J. Biol. Sci. 7: 1438–1442. http://dx.doi.org/10.3923/pjbs.2004.1438.1442CrossrefGoogle Scholar

  • [23] Khan S., Cao Q., Zheng Y.M., Huang Y.Z. & Zhu Y.G. 2008. Health risk of heavy metals in contaminated soils and food crops irrigated with waste water in Beijing, China. Environ. Pollut. 152: 686–692. http://dx.doi.org/10.1016/j.envpol.2007.06.056CrossrefGoogle Scholar

  • [24] Khan S., Hesham A.E.L., Qiao M., Rehman S. & He J.Z. 2010. Effect of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Polut. Res. 17: 288–296. http://dx.doi.org/10.1007/s11356-009-0134-4CrossrefGoogle Scholar

  • [25] Khillare P.S., Balachandran S. & Meena B.R. 2004. Spatial and temporal variation of heavy metals in atmospheric aerosols of Delhi. Environ. Monit. Assess. 90: 1–21. http://dx.doi.org/10.1023/B:EMAS.0000003555.36394.17CrossrefGoogle Scholar

  • [26] Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. & Higgins D.G. 2007. ClustalW and ClustalX version 2 (2007). Bioinformatics 23: 2947–2948. http://dx.doi.org/10.1093/bioinformatics/btm404CrossrefGoogle Scholar

  • [27] Leung W.C., Wong M.F., Chua H., Lo W., Yu P.H.F. & Leung C.K. 2000. Removal and recovery of heavy metals by bacteria isolated from activated sludge treating industrial effluents and municipal wastewater. Wat. Sci. Technol. 12: 233–240. Google Scholar

  • [28] Malekzadeh F., Farazmand A., Ghafourian H., Shahamat M., Levin M. & Colwell R.R. 2002 Uranium accumulation by a bacterium isolated from electroplating effluent. World J. Microbiol. Biotechnol 18: 295–302. http://dx.doi.org/10.1023/A:1015215718810CrossrefGoogle Scholar

  • [29] Mashauri D.A. & Mayo A. 1990. The environmental impact of industrial and domestic waste water in Dar Es Salaam, pp. 23–32. In: Khan M.R. & Gijzen H.J. (eds), Environmental Pollution and its Management in East Africa, University of Dar Es Salaam, Tanzania. Google Scholar

  • [30] Mengoni A., Barzanti R., Gonnelli C., Gabbrielli R. & Bazzicalopo M. 2001. Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ. Microbiol. 3: 691–698. http://dx.doi.org/10.1046/j.1462-2920.2001.00243.xCrossrefGoogle Scholar

  • [31] Nandy P., Thakur A.R. & Ray Chaudhuri S. 2007. Characterization of bacterial strains isolated through microbial profiling of urine samples. Online J. Biol. Sci. 7: 44–51. http://dx.doi.org/10.3844/ojbsci.2007.44.51CrossrefGoogle Scholar

  • [32] Othman O.C. 2001. Heavy metals in green vegetables and soils from vegetable gardens in Dar es Salaam, Tanzania. Tanzania J. Sci. Assoc. Crop Sci. 27: 37–48. Google Scholar

  • [33] Radwan M.A. & Salama A.K. 2006. Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food Chem. Toxicol. 44: 1273–1278. http://dx.doi.org/10.1016/j.fct.2006.02.004CrossrefGoogle Scholar

  • [34] Rajkumar M., Nagendran R., Lee K.J., Lee W.H. & Kim S.Z. 2006. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62: 741–748. http://dx.doi.org/10.1016/j.chemosphere.2005.04.117CrossrefGoogle Scholar

  • [35] Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425. Google Scholar

  • [36] Sharma R.K., Agrawal M. & Marshall F.M. 2008. Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: a case study in Varanasi. Environ. Pollut. 154: 254–263. http://dx.doi.org/10.1016/j.envpol.2007.10.010CrossrefGoogle Scholar

  • [37] Sherameti I. & Varma A. 2011. Detoxification of Heavy Metals, Series: Soil Biology, Vol. 30. Springer-Verlag, 448 pp. Google Scholar

  • [38] Smith S.R. 1994. Effect of soil pH on availability to crops of metals in sewage sludge treated soils. I. Nickel, copper and zinc uptake and toxicity to ryegrass. Environ. Pollut. 85: 321–327. http://dx.doi.org/10.1016/0269-7491(94)90054-XCrossrefGoogle Scholar

  • [39] Spain A. 2003. Implications of microbial heavy metal resistance in the environment. Review Undergrad. Res. 2: 1–6. Google Scholar

  • [40] Tamura K., Nei M. & Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 101: 11030–11035. http://dx.doi.org/10.1073/pnas.0404206101CrossrefGoogle Scholar

  • [41] Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739. http://dx.doi.org/10.1093/molbev/msr121CrossrefGoogle Scholar

  • [42] Tian-Wei T., Hu B. & Haijia S. 2004. Adsorption of Ni2+ on amine-modified mycelium of Penicillium chrysogenum. Enzyme Microb. Technol. 35: 508–513. http://dx.doi.org/10.1016/j.enzmictec.2004.08.035CrossrefGoogle Scholar

  • [43] Vishnivetskaya A.T., Kathariou S. & Tiedje J.M. 2009. The Exiguobacterium genus: biodiversity and biogeography. Extremophiles 13: 541–555. http://dx.doi.org/10.1007/s00792-009-0243-5CrossrefGoogle Scholar

  • [44] Vivas A., Biro B., Nemeth T., Barea J.M. & Azcon R. 2006. Nickel tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol. Biochem. 38: 2694–2704. http://dx.doi.org/10.1016/j.soilbio.2006.04.020CrossrefGoogle Scholar

  • [45] Waalkes M.P. & Rehm S. 1994. Cadmium and prostate cancer. J. Toxicol. Environ. Health 43: 251–269. http://dx.doi.org/10.1080/15287399409531920CrossrefGoogle Scholar

  • [46] Wang X.L., Sato T., Xing B.S. & Tao S. 2005. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 350: 28–37. http://dx.doi.org/10.1016/j.scitotenv.2004.09.044CrossrefGoogle Scholar

  • [47] Wong C.S.C., Li X.D., Zhang G., Qi S.H. & Peng X.Z. 2003. Atmospheric depositions of heavy metals in the Pearl River Delta, China. Atmos. Environ. 37: 767–776. http://dx.doi.org/10.1016/S1352-2310(02)00929-9CrossrefGoogle Scholar

  • [48] Yan G. & Viraraghavan T. 2003. Heavy metal removal from aqueous solution by fungus Mucor rouxii. Water Res. 37: 4486–4496. http://dx.doi.org/10.1016/S0043-1354(03)00409-3CrossrefGoogle Scholar

  • [49] Yilmaz E.I. 2003. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res. Microbiol. 154: 409–415. http://dx.doi.org/10.1016/S0923-2508(03)00116-5Google Scholar

  • [50] Zayed A., Gowthaman S. & Terry N. 1998. Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J. Environ. Qual. 27: 715–721. http://dx.doi.org/10.2134/jeq1998.00472425002700030032xCrossrefGoogle Scholar

  • [51] Zhang Z., Schwartz S., Wagner L. & Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7: 203–214. http://dx.doi.org/10.1089/10665270050081478CrossrefGoogle Scholar

  • [52] Zurera-Cosano G., Moreno-Rojas R., Salmeron-Egea J. & Pozo Lora R. 1989. Heavy metal uptake from greenhouse border soils for edible vegetables. J. Sci. Food Agric. 49: 307–314. http://dx.doi.org/10.1002/jsfa.2740490307CrossrefGoogle Scholar

About the article

Published Online: 2012-08-23

Published in Print: 2012-10-01

Citation Information: Biologia, Volume 67, Issue 5, Pages 827–836, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-012-0099-5.

Export Citation

© 2012 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Vipin Kumar Singh, Amit Kishore Singh, Prem Pratap Singh, and Ajay Kumar
Agriculture, Ecosystems & Environment, 2018, Volume 267, Page 129
Zafarullah Muhammad, Rabia Ramzan, Shanshan Zhang, Haijuan Hu, Ahsan Hameed, Amr M. Bakry, Yongzhen Dong, Lufeng Wang, and Siyi Pan
Frontiers in Microbiology, 2018, Volume 9
Li-Chun Wu, Teh-Hua Tsai, Man-Hai Liu, Jui-Ling Kuo, Yung-Chu Chang, and Ying-Chien Chung
Sensors, 2017, Volume 17, Number 11, Page 2461
Maranda Esterhuizen-Londt, Katrin Schwartz, and Stephan Pflugmacher
Fungal Biology, 2016, Volume 120, Number 10, Page 1249
Emmanuel Gonzalez, Nicholas J. B. Brereton, Julie Marleau, Werther Guidi Nissim, Michel Labrecque, Frederic E. Pitre, and Simon Joly
BMC Plant Biology, 2015, Volume 15, Number 1
Huaqun Yin, Jiaojiao Niu, Youhua Ren, Jing Cong, Xiaoxia Zhang, Fenliang Fan, Yunhua Xiao, Xian Zhang, Jie Deng, Ming Xie, Zhili He, Jizhong Zhou, Yili Liang, and Xueduan Liu
Scientific Reports, 2015, Volume 5, Number 1
María V. Fernández, Rosa J. Jagus, and Sandra L. Mugliaroli
Food and Bioprocess Technology, 2014, Volume 7, Number 9, Page 2528

Comments (0)

Please log in or register to comment.
Log in