Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 67, Issue 6

Issues

Metal interactions within and between tissues of nestling rooks Corvus frugilegus

Grzegorz Orłowski
  • Institute of Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska St. 19, 60-809, Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Kamiński
  • Collegium Medicum in Bydgoszcz, Department of Ecology and Environmental Protection, Nicolaus Copernicus University, M. Skłodowska-Curie St. 9, 85-094, Bydgoszcz, Poland
  • Faculty of Biological Sciences, Institute of Biotechnology and Environment Protection, Department of Biotechnology, University of Zielona Góra, Prof. Z. Szafran St. 1, 65-516, Zielona Góra, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zbigniew Kasprzykowski / Zbigniew Zawada
  • Faculty of Biological Sciences, Natural Museum, Department of Zoology, University of Zielona Góra, Prof. Z. Szafran St. 1, 65-516, Zielona Góra, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-10-19 | DOI: https://doi.org/10.2478/s11756-012-0108-8

Abstract

We analyzed interactions of concentrations of 11 essential and nonessential elements, including toxic metals within and between internal organs (liver, kidney and lung), muscles and bones of nestling rooks Corvus frugilegus with acute cadmium contamination and elevated level of lead. The number of statistically significant (P ≤ 0.05) metal-metal relationships (positive/negative) within particular tissues was the highest in the kidney (7/6), following in the bone (9/2), liver (6/4), lung (5/2) and muscle (5/2). We found eight significant interactions of lead with other metals, and only two of cadmium (only with lead and cobalt, which probably mirrored a greater ability of lead (than in the case of cadmium) to functional and kinetic interaction with other metals, and/or inhibiting effect of lead or cadmium in co-accumulation. Furthermore, a positive relationship between concentration of cadmium and lead in the kidney could hint at the key importance of this organ in detoxification of both toxic metals. Analyses of relationships of individual metals between examined tissues show only positive results in the case of copper (n = 8), following potassium (n = 3), zinc and iron (in both cases n = 2) and a single ones for calcium and magnesium. We concluded that the lack of significant relationships of individual toxic metals (cadmium or lead) between analyzed tissues could result from high levels of these metals, which destroyed detoxifying capacity of kidney, and ultimately enabled a rapid bioaccumulation of these inorganic contaminations in all tissues of examined nestlings. An explanation of concentration of toxic metals in tissues of animals, especially in the case of their high level, require an identification of the actual level of essential elements associated with physiological status of organism.

Keywords: toxic metals; essential metals; lead; cadmium; tissues; liver; element-element interactions

  • [1] Alonso M.L., Montana F.P., Miranda M., Castillo C., Hernandez J. & Benedito J.L. 2004. Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain. BioMetals 17(4): 389–397. DOI: 10.1023/B:BIOM.0000029434.89679.a2 http://dx.doi.org/10.1023/B:BIOM.0000029434.89679.a2CrossrefGoogle Scholar

  • [2] Bilby L.W. & Widdowson E.M. 1971. Chemical composition of growth in nestling blackbirds and thrushes. Br. J. Nutr. 25(1): 127–134. DOI: 10.1079/BJN19710070 http://dx.doi.org/10.1079/BJN19710070CrossrefGoogle Scholar

  • [3] Blanco G., Jimenez B., Frias O., Millan J. & Davila J.A. 2004. Contamination with nonessential metals from a solid-waste incinerator correlates with nutritional and immunological stress in prefledgling black kites (Milvus migrans). Environ. Res. 94(1): 94–101. DOI: 10.1016/S0013-9351(03)00120-8 http://dx.doi.org/10.1016/S0013-9351(03)00120-8CrossrefGoogle Scholar

  • [4] Blanco-Penedo I., Cruz J.M., López-Alonso M., Miranda M., Castillo C., Hernández J. & Benedito J.L. 2006. Influence of copper status on the accumulation of toxic and essential metals in cattle. Environ. Int. 32(7): 901–906. DOI: 10.1016/j.envint.2006.05.012 http://dx.doi.org/10.1016/j.envint.2006.05.012CrossrefGoogle Scholar

  • [5] Burger J. & Gochfeld M. 2000. Metals in albatross feathers from Midway Atoll: influence of species, age, and nests location. Environ. Res. A 82(3): 207–221. DOI: 10.1006/enrs.1999.4015 http://dx.doi.org/10.1006/enrs.1999.4015CrossrefGoogle Scholar

  • [6] Chandler C.R. 1995. Practical considerations in the use of simultaneous inference for multiple tests. Anim. Behav. 49(2): 524–527. DOI:10.1006/anbe.1995.0069 http://dx.doi.org/10.1006/anbe.1995.0069CrossrefGoogle Scholar

  • [7] Cosson R.P., Amiard J.C. & Amiard-Triquet C. 1988a. Trace elements in little egrets and flamingos of Camargue, France. Ecotoxicol. Environ. Safe. 15(1): 107–116. PMID: 3359952 http://dx.doi.org/10.1016/0147-6513(88)90047-4CrossrefGoogle Scholar

  • [8] Cosson R.P., Amiard-Triquet C. & Amiard J.C. 1988b. Utilisation des plumes dans la recherche des sources de contamination des oiseaux par les elements traces: Cd, Cu, Hg, Pb, Se et Zn chez les flamants de Camargue, France. Water, Air Soil Pollut. 42(1–2): 103–115. DOI: 10.1007/BF00282394 CrossrefGoogle Scholar

  • [9] Dauwe T., Snoeijs T., Bervoets L., Blust R. & Eens M. 2006. Calcium availability influences lead accumulation in a passerine bird. Anim. Biol. 56(3): 289–298. DOI: 10.1163/157075606778441822. http://dx.doi.org/10.1163/157075606778441822CrossrefGoogle Scholar

  • [10] Davis C.D., Ney D.M. & Greger J.L. 1990. Manganese, iron and lipid interactions. J. Nutr. 120(5): 507–513. PMID: 2341915 Google Scholar

  • [11] Frieden E. 1974. The evolution of metals as essential elements. Adv. Exp. Med. 48(1): 1–32. PMID: 4611156 http://dx.doi.org/10.1007/978-1-4684-0943-7_1CrossrefGoogle Scholar

  • [12] Goyer R.A. 1997. Toxic and essential metal interactions. Ann. Rev. Nutr. 17(1): 37–50. DOI: 10.1146/annurev.nutr.17.1.37 http://dx.doi.org/10.1146/annurev.nutr.17.1.37CrossrefGoogle Scholar

  • [13] Hagen J., Hagen E., Ostbye E. & Skar H.J. 1976. Some chemical elements in the body of the Meadow Pipit, Anthus pratensis (L.). Norw. J. Zool. 24: 279–289. Google Scholar

  • [14] Hawaria A.H. & Mulligan C.N. 2007. Effect of the presence of lead on the biosorption of copper, cadmium and nickel by anaerobic biomass. Proc. Biochem. 42(11): 1546–1552. DOI: 10.1016/j.procbio.2007.08.009 http://dx.doi.org/10.1016/j.procbio.2007.08.009CrossrefGoogle Scholar

  • [15] Irato P., Santon A., Ossi E. & Albergoni V. 2001. Interactions between metals in rat liver and kidney: Localization of metallothionein. Histochem J. 33(2): 79–86. DOI: 10.1023/A:1017944129801 http://dx.doi.org/10.1023/A:1017944129801CrossrefGoogle Scholar

  • [16] Kalavrouziotis I.K., Koukolakis P.H., Manouris G. & Papadopoulos A.H. 2009. Interactions between cadmium, lead, cobalt, and nickel in broccoli, irrigated with treated municipal wastewater. Eur. Water 25/26: 13–23. Google Scholar

  • [17] Kalisińska E., Salicki W., Kavetska K.M. & Ligocki M. 2007. Trace metal concentrations are higher in cartilage than in bones of scaup and pochard wintering in Poland. Sci. Tot. Environ. 388(1–3): 90–103. DOI: 10.1016/j.scitotenv.2007.07. 050 Web of ScienceCrossrefGoogle Scholar

  • [18] Kalisińska E., Salicki W., Mysłek P., Kavetska K.M. & Jackowski A. 2004. Using the Mallard to biomonitor heavy metal contamination of wetlands in north-western Poland. Sci. Tot. Environ. 320(2–3): 145–161. DOI: 10.1016/j.scitotenv.2003.08.014 CrossrefGoogle Scholar

  • [19] Kamiński P. 1998. The Impact of Calcium and Heavy Metals Upon the Nest Development of the Tree Sparrow (Passer montanus). Wyd. UMK, Toruń, 140 pp. ISBN: 8323109710, 9788323109716 Google Scholar

  • [20] Kamiński P., Choiński A. & Wołosiuk B. 1993. Dynamics of the content of selected elements in the nestling development of the House Martin Delichon urbica in a rural landscape. Acta Ornithol. 28(1): 23–37. Google Scholar

  • [21] Kamiński P. & Matus A. 1998. The impact of urban environments on the growth and histopathological changes of tree sparrow (Passer montanus) nestlings. Pol. J. Environ. Stud. 7(3): 131–150. Google Scholar

  • [22] Kamiński P. & Warot L. 2005a. [Chemical element interactions in Jackdaw Corvus monedula nestlings], pp. 173–184. In: Jerzak L., Kavanagh B.P. & Tryjanowski P. (eds), Ptaki krukowate Polski [Corvids of Poland], Bogucki Wyd. Nauk., Poznań. 679 pp. ISBN: 8389290928 Google Scholar

  • [23] Kamiński P. & Warot L. 2005b. [Dynamics of physiological elements in the Jackdaw Corvus monedula during nesting development in an agricultural landscape], pp. 155–172. In: Jerzak L., Kavanagh B.P. & Tryjanowski P. (eds), Ptaki krukowate Polski [Corvids of Poland], Bogucki Wyd. Nauk., Poznań. 679 pp. ISBN: 8389290928 Google Scholar

  • [24] Kasprzykowski Z. 2001. Niekorzystne warunki pogodowe przyczyna strat w legach gawrona Corvus frugilegus [Unfavourable weather conditions the cause of the rook Corvus frugilegus brood losses]. Notatki Ornitologiczne 41: 255–256. Google Scholar

  • [25] Kasprzykowski Z. 2002. Biologia rozrodu gawrona Corvus frugilegus w krajobrazie rolniczym wschodniej Polski [Reproductive biology of the rook Corvus frugilegus in the agricultural landscape of eastern Poland]. Notatki Ornitologiczne 43: 219–226. Google Scholar

  • [26] Kasprzykowski Z. 2003. Habitat preferences of foraging Rooks Corvus frugilegus during the breeding period in the agricultural landscape of eastern Poland. Acta Ornithol. 38(1): 27–31. CrossrefGoogle Scholar

  • [27] Kasprzykowski Z. 2007. Reproduction of the rook, Corvus frugilegus in relation to the colony size and foraging habitats. Folia Zool. 56(2): 186–193. Google Scholar

  • [28] Kasprzykowski Z. 2008. Nest location within the tree and breeding parameters of Rooks Corvus frugilegus. Bird Study 55(1): 59–65. DOI: 10.1080/00063650809461505 http://dx.doi.org/10.1080/00063650809461505CrossrefWeb of ScienceGoogle Scholar

  • [29] Larison J.R. 2002. Effects of cadmium on white-tailed ptarmigan in Colorado. Utah Divison of Oil, Gas and Mining OGM File Services. pp. 188–197. In: 2002 NAAMLP 24th Annual Conference Proceedings Technical paper session 5 — Biology / Vegetation, 578 pp. http://fs.ogm.utah.gov/pub/MINES/AMRRelated/NAAMLP/BioVeg/Larison.pdf (accessed 23.03.2010) Google Scholar

  • [30] Larison J.R., Likens G.E., Fitzpatrick J.W. & Crock J.G. 2000. Cadmium toxicity among wildlife in the Colorado Rocky Mountains. Nature 406(6792): 181–183. DOI: 10.1038/35018068 http://dx.doi.org/10.1038/35018068CrossrefGoogle Scholar

  • [31] Mochizuki M., Mori M., Hondo R. & Ueda F. 2008. A new index for evaluation of cadmium pollution in birds and mammals. Environ. Monit. Assess. 137(1–3): 35–49. DOI: 10.1007/s10661-007-9727-x http://dx.doi.org/10.1007/s10661-007-9727-xCrossrefWeb of ScienceGoogle Scholar

  • [32] Morgan J.E. & Morgan A.J. 1988. Calcium-lead interactions involving earthworms. Part 1: The effect of exogenous calcium on lead accumulation by earthworms under field and laboratory conditions. Environ. Pollut. 54(1): 41–53. DOI: 10.1016/0269-7491(88)90174-1 http://dx.doi.org/10.1016/0269-7491(88)90174-1CrossrefGoogle Scholar

  • [33] Nagy N.N. & Konya J. 1998. Ion-exchange process of lead and cobalt ions on the surface of calcium-montmorillonite in the presence of complex-forming agents. I. The effect of EDTA on the sorption of lead and cobalt ions on calcium-montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 137(1–3): 231–242. DOI:10.1016/S0927-7757(97)00381-6 http://dx.doi.org/10.1016/S0927-7757(97)00381-6CrossrefGoogle Scholar

  • [34] Orłowski G., Kamiński P., Kasprzykowski Z., Zawada Z., Koim-Puchowska B., Szady-Grad M. & Klawe J.J. 2012. Essential and nonessential elements in nestling Rooks Corvus frugilegus from eastern Poland with a special emphasis on their high cadmium contamination. Arch. Environ. Contam. Toxicol. DOI: 10.1007/s00244-012-9794-z Web of ScienceCrossrefGoogle Scholar

  • [35] Orłowski G., Kasprzykowski Z., Zawada Z. & Kopij G. 2009. Stomach content and grit ingestion by Rook Corvus frugilegus nestlings. Ornis Fenn 86: 117–122. Google Scholar

  • [36] Petering H.G. 1974. The effect of cadmium and lead on copper and zinc metabolism, pp. 311–325. In: Hoekstra W.G., Suttie J.W., Ganther H.E. & Mertz W. (eds), Trace Element Metabolism in Animals-II, University Park Press, Baltimore. 760 pp. Google Scholar

  • [37] Pinowski J., Pinowska B., Kraśnicki K. & Tomek T. 1983. Chemical composition of growth in nestling Rooks Corvus frugilegus. Ornis Scand. 14: 289–298. http://dx.doi.org/10.2307/3676321CrossrefGoogle Scholar

  • [38] Pinowski J., Barkowska M. & Pinowska B. 1995. Interaction of microorganisms, heavy metals and pesticides from liver and their effect on the development and mortality of Passer spp. nestlings, pp. 307–338. In: Pinowski J., Kavanagh B.P. & Pinowska B. (eds), Nestling Mortality of Granivorous Birds due to Microorganisms and Toxic Substances: Synthesis, PWN, Warszawa, 437 pp. ISBN: 8301116749, 9788301116743 Google Scholar

  • [39] Prasada Rao P.V.V., Jordan S.A. & Bhatnagar M.K. 1989. Combined nephrotoxicity of methylmercury, lead, and cadmium in pekin ducks: Metallothionein, metal interactions, and histopathology. J. Toxicol. Environ. Health 26(3): 327–348. DOI: 10.1080/15287398909531257 http://dx.doi.org/10.1080/15287398909531257CrossrefGoogle Scholar

  • [40] Rucker R.B., O’Dell B.L., Parker H.E. & Rogler J.C. 1970. The role of copper in crosslinking of collagen and elastin. Trace Subs. Envir. Health 4: 255–259. Google Scholar

  • [41] Scheuhammer A.M. 1996. Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds. Environ. Poll. 94(3): 337–343. DOI: 10.1016/S0269-7491(96)00084-X http://dx.doi.org/10.1016/S0269-7491(96)00084-XCrossrefGoogle Scholar

  • [42] StatSoft, 2006. Statistica© (Data Analysis Software System), Version 7.1., Tulsa, USA. Google Scholar

  • [43] Terelak H., Stuczyński T., Motowicka-Terelak T., Maliszewska-Kordybach B & Pietruch C. 2008. Monitoring Chemizmu Gleb Ornych Polskiwlatach 2005–2007. Instytut Uprawy Nawożenia i Gleboznawstwa. National Research Institute in Puławy. Puławy, Poland, 205 pp. ISBN: 978-83-7217-319-5 Google Scholar

  • [44] Wayland M., Neugebauer E. & Bollinger T. 1999. Concentrations of lead in liver, kidney, and bone of bald and golden eagles. Arch. Environ. Contam. Toxicol. 37(2): 267–272. DOI: 10.1007/s002449900514 http://dx.doi.org/10.1007/s002449900514CrossrefGoogle Scholar

  • [45] Weltz B. 1985. Atomic Absorption Spectrometry, Second Completely Revised Edition VCH Veincheim, Berlin, Germany, 965 pp. ISBN: 3527285717, 9783527285716 Google Scholar

  • [46] Wenzel C., Adelung D. & Theede H. 1996. Distribution and agerelated changes of trace elements in kittiwake Rissa tridactyla nestlings from a isolated colony in the German Bight, North Sea. Sci. Tot. Environ. 193(1): 13–26. DOI: 10.1016/S0048-9697(96)05320-X http://dx.doi.org/10.1016/S0048-9697(96)05320-XCrossrefGoogle Scholar

  • [47] Woshner V.M., O’Hara T.M., Bratton G.R., Suydam R.S. & Beasley V.R. 2001. Concentrations and interactions of selected essential and non-essential elements in bowhead and beluga whales of arctic Alaska. J. Wild. Dis. 37(4): 693–710. PMID: 11763733 Google Scholar

  • [48] Woshner V.M., O’Hara T.M., Bratton G.R. & Beasley V.R. 2001. Concentrations and interactions of selected essential and nonessential elements in ringed seals and polar bears of arctic Alaska. J. Wildl. Dis. 37(4): 711–721. PMID: 11763734 Google Scholar

  • [49] Young C.Y., Sang K.L., Ja Y.Y., Ki W.K., Lee S.-Y., Seung M.O. & Chung K.H. 2002. Interrelationship between the concentration of toxic and essential elements in Korean tissues. J. Health Sci. 48(2): 195–200. http://dx.doi.org/10.1248/jhs.48.195CrossrefGoogle Scholar

About the article

Published Online: 2012-10-19

Published in Print: 2012-12-01


Citation Information: Biologia, Volume 67, Issue 6, Pages 1211–1219, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-012-0108-8.

Export Citation

© 2012 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Jinming Luo, Xiaohua Li, Yongjie Wang, and Hongying Li
Human and Ecological Risk Assessment: An International Journal, 2017, Page 1
[3]
Ignacy Kitowski, Dariusz Jakubas, Dariusz Wiącek, and Agnieszka Sujak
Agriculture, Ecosystems & Environment, 2017, Volume 250, Page 123
[4]
Luo Jinming, Wang Yongjie, Gao Zhongyan, and Wang Wenfeng
Environmental Science and Pollution Research, 2017, Volume 24, Number 19, Page 16351
[5]
Jinming Luo, Yajie Ye, Zhongyan Gao, and Wenfeng Wang
Toxicological & Environmental Chemistry, 2014, Volume 96, Number 7, Page 1096
[6]
Marcin Markowski, Mirosława Bańbura, Adam Kaliński, Janusz Markowski, Joanna Skwarska, Jarosław Wawrzyniak, Piotr Zieliński, and Jerzy Bańbura
Archives of Environmental Contamination and Toxicology, 2014, Volume 67, Number 4, Page 507
[7]
Grzegorz Orłowski, Zbigniew Kasprzykowski, Wojciech Dobicki, Przemysław Pokorny, Andrzej Wuczyński, Ryszard Polechoński, and Tomasz D. Mazgajski
Archives of Environmental Contamination and Toxicology, 2014, Volume 67, Number 4, Page 519

Comments (0)

Please log in or register to comment.
Log in