Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 67, Issue 6

Issues

How life history affects threat status: Requirements of two Onobrychis-feeding lycaenid butterflies, Polyommatus damon and Polyommatus thersites, in the Czech Republic

Jana Šlancarová
  • Department of Zoology, University of South Bohemia, CZ-37005, České Budějovice, Czech Republic
  • Biology Centre, ASCR, v. v. i., Institute of Entomology, CZ-37005, České Budějovice, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbora Bednářová / Jiří Beneš / Martin Konvička
  • Department of Zoology, University of South Bohemia, CZ-37005, České Budějovice, Czech Republic
  • Biology Centre, ASCR, v. v. i., Institute of Entomology, CZ-37005, České Budějovice, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-10-19 | DOI: https://doi.org/10.2478/s11756-012-0109-7

Abstract

Comparisons of related species differing in conservation status may offer insights into causes of species declines. We studied egg-laying patterns and landscape occupancy of two sympatric lycaenidae butterflies inhabiting xeric grasslands, vulnerable Polyommatus thersites and critically endangered Polyommatus [Agrodiaetus] damon, both developing on sainfoin, Onobrychis spp. Females of bivoltine P. thersites oviposit on host plant leaves at a relatively low height (≈20 cm), in both spring (May–June) and summer (July–August) generations. Females of univoltine P. damon (July–September) oviposit to senescing inflorescences, in significantly higher heights (>30 cm), and the species is hence vulnerable to summer mowing or grazing. On a landscape scale, both species tended to occur at sites with diverse sward management, including temporarily unmanaged patches. In addition, P. damon occurred only in the proximity of other occupied sites. The study documents that grassland management must respect the needs of the most vulnerable species, and because these needs are seldom known, it must maintain a high diversity of conditions within individual sites.

Keywords: butterfly conservation; farmland landscape; grazing; habitat management; insect life history; Lepidoptera; metapopulation; xeric grassland

  • [1] Akaike H. 1974. A new look at the statistical model identification. IEEE T. Automat. Contr. 19(6): 716–723. http://dx.doi.org/10.1109/TAC.1974.1100705Google Scholar

  • [2] Beneš J., Konvička M., Dvořák J., Fric Z., Havelka Z., Pavlíčko A., Vrabec V. & Weidenhoffer Z. 2002. Motýli České republiky: Rozšíření a ochrana I. Společnost pro ochranu motýlů, Praha, 478 pp. ISBN: 8090321208 Google Scholar

  • [3] Binzenhofer B., Biedermann R., Settele J. & Schroder B. 2008. Connectivity compensates for low habitat quality and small patch size in the butterfly Cupido minimus. Ecol. Res. 23(2): 259–269. DOI: 10.1007/s11284-007-0376-x http://dx.doi.org/10.1007/s11284-007-0376-xCrossrefGoogle Scholar

  • [4] Bourn N.A.D. & Thomas J.A. 2002. The challenge of conserving grassland insects at the margins of their range in Europe. Biol. Conserv. 104: 285–292. DOI: 10.1016/S0006-3207(01)00193-8 http://dx.doi.org/10.1016/S0006-3207(01)00193-8CrossrefGoogle Scholar

  • [5] Brereton T.M., Warren M.S., Roy D.B. & Stewart K. 2008. The changing status of the Chalkhill Blue butterfly Polyommatus coridon in the UK: the impacts of conservation policies and environmental factors. J. Insect Conserv. 12(6): 629–638. DOI: 10.1007/s10841-007-9099-0 http://dx.doi.org/10.1007/s10841-007-9099-0CrossrefGoogle Scholar

  • [6] Buszko J. & Masłowski J. 2008. Motyle dzienne Polski. Koliber, Oprawa, 276 pp. ISBN: 8392515048 Google Scholar

  • [7] Čížek L., Fric Z. & Konvička M. 2006. Host plant defences and voltinism in European butterflies. Ecol. Entomol. 31(4): 337–344. DOI: 10.1111/j.1365-2311.2006.00783.x http://dx.doi.org/10.1111/j.1365-2311.2006.00783.xCrossrefGoogle Scholar

  • [8] Čížek L., Hauck D. & Pokluda P. 2012. Contrasting needs of grassland dwellers: habitat preferences of endangered steppe beetles (Coleoptera). J. Insect Conserv. 16(2): 281–293. DOI: 10.1007/s10841-011-9415-6 http://dx.doi.org/10.1007/s10841-011-9415-6CrossrefGoogle Scholar

  • [9] Čížek O., Zámečník J., Tropek R., Kočárek P. & Konvička M. 2012. Diversification of mowing regime increases arthropods diversity in species-poor cultural hay meadows. J. Insect Conserv. 16(2): 215–226. DOI: 10.1007/s10841-011-9407-6 http://dx.doi.org/10.1007/s10841-011-9407-6CrossrefGoogle Scholar

  • [10] Dennis R.L.H., Shreeve T.G. & Van Dyck H. 2003. Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102(2): 417–426. DOI: 10.1034/j.1600-0579.2003.12492.x http://dx.doi.org/10.1034/j.1600-0706.2003.12387.xCrossrefGoogle Scholar

  • [11] Dierks A. & Fischer K. 2009. Habitat requirements and niche selection of Maculinea nausithous and M. teleius (Lepidoptera: Lycaenidae) within a large sympatric metapopulation. Biodivers. Conserv. 18(13): 3663–3676. DOI: 10.1007/s10531-009-9670-y http://dx.doi.org/10.1007/s10531-009-9670-yCrossrefGoogle Scholar

  • [12] Dolek M. 1994. Der Einfluss der Schafbeweidung von Kalkmagerrasen in der Südlichen Frankenalb auf die Insektenfauna (Tagfalter, Heuschrecken). pp. 113–122. In: Nentwig W. & Poehling H.-M. (eds), Schriftenreihe Agrarökologie, Band 10, Haupt Verlag, Bern, 126 pp. ISBN: 3258049556 Google Scholar

  • [13] Dolek M. & Geyer A. 2002. Conserving biodiversity on calcareous grasslands in the Franconian Jura by grazing: a comprehensive approach. Biol. Conserv. 104(3): 351–360. DOI: 10.1016/S0006-3207(01)00200-2 http://dx.doi.org/10.1016/S0006-3207(01)00200-2CrossrefGoogle Scholar

  • [14] Donald P.F., Green R.E. & Heath M.F. 2001. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 268(1462): 25–29. DOI: 10.1098/rspb.2000.1325 http://dx.doi.org/10.1098/rspb.2000.1325CrossrefGoogle Scholar

  • [15] Dover J.W., Rescia A., Fungarino S., Fairburn J., Carey P., Lunt P., Dennis R.L.H. & Dover C.J. 2010. Can hay harvesting detrimentally affect adult butterfly abundance? J. Insect Conserv. 14(4): 413–418. DOI: 10.1007/s10841-010-9267-5 http://dx.doi.org/10.1007/s10841-010-9267-5CrossrefGoogle Scholar

  • [16] Ebert G. & Rennwald E. 1991. Die Schmetterflinge Baden-Württembergs, Band 2: Tagfalter II. Ulmer, Stuttgart, 535 pp. ISBN: 3800134594 Google Scholar

  • [17] Farkač J., Král D. & Škorpík M. 2005. Červený seznam ohrožených druhů České republiky. Bezobratlí [List of threatened species in the Czech Republic. Invertebrates]. Agentura ochrany přírody a krajiny ČR, Praha, 760 pp. ISBN: 80-86064-96-4 Google Scholar

  • [18] Fiedler K. 2006. Ant-associates of Palaearctic lycaenid butterfly larvae (Hymenoptera: Formicidae; Lepidoptera: Lycaenidae) — a review. Myrmecologische Nachrichten 9: 77–87. Google Scholar

  • [19] Forister M.L. 2005. Influence of host plant phenology on Mitoura nelsoni (Lepidoptera: Lyeaenidae). Ann. Entomol. Soc. Am. 98(3): 295–301. DOI: 10.1603/0013-8746(2005)098[0295: IOHPPO]2.0.CO;2 http://dx.doi.org/10.1603/0013-8746(2005)098[0295:IOHPPO]2.0.CO;2Google Scholar

  • [20] Fric Z., Klímová M. & Konvička M. 2006. Mechanical design indicates differences in mobility among butterfly generations. Evol. Ecol. Res. 8(8): 1511–1522. Google Scholar

  • [21] Gorbunov Y.P. 2001. The butterflies of Russia: classification, genitalia, keys for identification (Lepidoptera: Hesperioidea a Papilionoidea). Russian Academy of Sciences, Ekaterinburg, 320 pp. ISBN: 5941310048 Google Scholar

  • [22] Hanski I. 1999. Metapopulation Ecology. Oxford University Press, Oxford, 332 pp. ISBN: 0198540655 Google Scholar

  • [23] Hluchý M. 2007. Motýli a pesticidy: ošetřování vinic a CHKO Pálava. Živa 5: 217–220. Google Scholar

  • [24] Chytrý M., Kučera T. & Kočí M. 2001. Katalog biotopů České republiky. Agentura ochrany přírody a krajiny ČR, Praha, 304 pp. ISBN: 80-86064-55-7 Google Scholar

  • [25] Kadlec T., Beneš J., Jarošík V. & Konvička M. 2008. Revisiting urban refuges: Changes of butterfly and burnet fauna in Prague reserves over three decades. Landsc. Urban Plan. 85(1): 1–11. DOI: 10.1016/j.landurbplan.2007.07.007 http://dx.doi.org/10.1016/j.landurbplan.2007.07.007CrossrefGoogle Scholar

  • [26] Kadlec T., Vrba P., Kepka P., Schmitt T. & Konvička M. 2010. Tracking the decline of the once-common butterfly: delayed oviposition, demography and population genetics in the hermit Chazara briseis. Anim. Conserv. 13(2): 172–183. DOI: 10.1111/j.1469-1795.2009.00318.x http://dx.doi.org/10.1111/j.1469-1795.2009.00318.xCrossrefGoogle Scholar

  • [27] Kadlec T., Vrba P. & Konvička M. 2009. Microhabitat requirements of caterpillars of the critically endangered butterfly Chazara briseis (Nymphalidae: Satyrinae) in the Czech Republic. Nota Lepid. 32(1): 39–46. Google Scholar

  • [28] Kleijn D., Kohler F., Baldi A., Batary P., Concepcion E.D., Clough Y., Diaz M., Gabriel D., Holzschuh A., Knop E., Kovacs A., Marshall E.J.P., Tscharntke T. & Verhulst J. 2009. On the relationship between farmland biodiversity and landuse intensity in Europe. Proc. Roy. Soc. B — Biol. Sci. 276: 903–909. DOI: 10.1098/rspb.2008.1509 http://dx.doi.org/10.1098/rspb.2008.1509CrossrefGoogle Scholar

  • [29] Konvička M., Beneš J. & Čížek L. 2005. Ohrožený hmyz nelesních stanovišť: Ochrana a management. Sagittaria, Olomouc, 127 pp. ISBN: 80-239-6590-5 Google Scholar

  • [30] Konvička M., Beneš J., Čížek O., Kopeček F., Konvička O. & Vítaz L. 2008. How too much care kills species: Grassland reserves, agri-environmental schemes and extinction of Colias myrmidone (Lepidoptera: Pieridae) from its former stronghold. J. Insect Conserv. 12(5): 519–525. DOI: 10.1007/s10841-007-9092-7 http://dx.doi.org/10.1007/s10841-007-9092-7CrossrefGoogle Scholar

  • [31] Konvička M., Fric Z. & Beneš J. 2006. Butterfly extinctions in European states: do socioeconomic conditions matter more than physical geography? Global. Ecol. Biogeogr. 15: 82–92. DOI: 10.1111/j.1466-822x.2006.00188.x http://dx.doi.org/10.1111/j.1466-822X.2006.00188.xCrossrefGoogle Scholar

  • [32] Krauss J., Steffan-Dewenter I., Muller C.B. & Tscharntke T. 2005. Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography 28(4): 465–474. DOI: 10.1111/j.0906-7590.2005.04201.x http://dx.doi.org/10.1111/j.0906-7590.2005.04201.xCrossrefGoogle Scholar

  • [33] Krauss J., Steffan-Dewenter I. & Tscharntke T. 2004. Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus. Biol. Conserv. 120(3): 355–361. DOI: 10.1016/j.biocon.2004.03.007 http://dx.doi.org/10.1016/j.biocon.2004.03.007CrossrefGoogle Scholar

  • [34] Kudrna O. 1998. Die Tagfalterfauna der Rhön. Oedippus 15: 1–158. ISBN: 1436-5804 Google Scholar

  • [35] Kudrna O. 2002. The Distribution Atlas of European Butterflies. Oedippus, Schweinfurt, 344 pp. Google Scholar

  • [36] Mihoci I. & Šašić M. 2006. New data on the distribution of the Chapman’s blue Polyommatus thersites (Cantener, 1835) (Lepidoptera: Lycaenidae) in Croatia. Entomologia Croatica 10(1–2): 7–14. Google Scholar

  • [37] Mihoci I., Vajdić M. & Šašić M. 2006. The status of the damon blue Polyommatus (Agrodiaetus) damon (Denis & Shiffermüller, 1775) (Papilionoidea: Lycaenidae, Polyommatini) in the Croatian butterfly fauna. Nat. Croat. 15(1–2): 15–25. Google Scholar

  • [38] Morris M.G. 1967. Differences Between the Invertebrate Faunas of Grazed and Ungrazed Chalk Grassland, I. Responses of Some Phytophagous insects to Cessation of Grazing. J. Appl. Ecol. 4(2): 459–474. http://dx.doi.org/10.2307/2401348Google Scholar

  • [39] Morris M.G. 2000. The effects of structure and its dynamics on the ecology and conservation of arthropods in British grasslands. Biol. Conserv. 95(2): 129–142. DOI: 10.1016/S0006-3207(00)00028-8 http://dx.doi.org/10.1016/S0006-3207(00)00028-8CrossrefGoogle Scholar

  • [40] Murphy D.D., Menninger M.S., Ehrlich P.R. & Wilcox B.A. 1986. Local-population dynamics of adult butterflies and the conservation status of 2 closely related species. Biol. Conserv. 37(3): 201–223. DOI: 10.1016/0006-3207(86)90082-0 http://dx.doi.org/10.1016/0006-3207(86)90082-0Google Scholar

  • [41] Nässig W.A., Dorow W.H.O. & Flechtner G. 2004. Polyommatus (Agrodiaetus) damon ([Denis & Schiffermüller], 1775) in der hessischen Rhön wieder nachgewiesen (Lepidoptera: Lycaenidae). Nachrichten des Entomologischen Vereins Apollo, N.F. 25(1/2): 15–20. Google Scholar

  • [42] Oliver T., Roy D.B., Hill J.K., Brereton T. & Thomas C.D. 2010. Heterogeneous landscapes promote population stability. Ecol. Lett. 13(4): 473–484. DOI: 10.1111/j.1461-0248.2010.01441.x http://dx.doi.org/10.1111/j.1461-0248.2010.01441.xCrossrefGoogle Scholar

  • [43] Pokluda P., Hauck D. & Čížek L. 2012. Importance of marginal habitats for grassland diversity: Fallows and overgrown tall-grass steppe as key habitats of endangered ground-beetle Carabus hungaricus. Insect Conserv. Diver. 5(1): 27–36. DOI: 10.1111/j.1752-4598.2011.00146.x http://dx.doi.org/10.1111/j.1752-4598.2011.00146.xCrossrefGoogle Scholar

  • [44] Poschlod P., Bakker J.P. & Kahmen S. 2005. Changing land use and its impact on biodiversity. Basic Appl. Ecol. 6(2): 93–98. DOI: 10.1016/j.baae.2004.12.001 http://dx.doi.org/10.1016/j.baae.2004.12.001CrossrefGoogle Scholar

  • [45] Rosin Z.M., Skorka P., Lenda M., Moron D., Sparks T.H. & Tryjanowski P. 2011. Increasing patch area, proximity of human settlement and larval food plants positively affect the occurrence and local population size of the habitat specialist butterfly Polyommatus coridon (Lepidoptera: Lycaenidae) in fragmented calcareous grasslands. Eur. J. Entomol. 108(1):99–106 CrossrefGoogle Scholar

  • [46] Roy D.B. & Thomas J.A. 2003. Seasonal variation in the niche, habitat availability and population fluctuations of a bivoltine thermophilous insect near its range margin. Oecologia 134(3): 439–444. DOI: 10.1007/s00442-002-1121-3 CrossrefGoogle Scholar

  • [47] Samways M.J. & Lu S.S. 2007. Key traits in a threatened butterfly and its common sibling: implications for conservation. Biodivers. Conserv. 16(14): 4095–4107. DOI: 0.1007/s10531-007-9209-z http://dx.doi.org/10.1007/s10531-007-9209-zGoogle Scholar

  • [48] Sang A., Teder T., Helm A. & Partel M. 2010. Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biol. Conserv. 143(6): 1405–1413. DOI: 10.1016/j.biocon.2010.03.015 http://dx.doi.org/10.1016/j.biocon.2010.03.015CrossrefGoogle Scholar

  • [49] Schtickzelle N., Turlure C. & Baguette M. 2007. Grazing management impacts on the viability of the threatened bog fritillary butterfly Proclossiana eunomia. Biol. Conserv. 136(4): 651–660. DOI: 10.1016/j.biocon.2007.01.012 http://dx.doi.org/10.1016/j.biocon.2007.01.012CrossrefGoogle Scholar

  • [50] Schwarz R. 1948. Motýli denní II. Vesmír, Praha, 49 pp. Google Scholar

  • [51] Settele J., Shreeve T., Konvička M. & Van Dyck H. 2009. Part 5. Global Change and Conservation, pp. 315–370. In: Settele J., Shreeve T., Konvička M. & Van Dyck H. (eds), Ecology of Butterflies in Europe, Cambridge University Press, Cambridge. 526 pp. ISBN: 9780521766975, 9780521747592 Google Scholar

  • [52] Stoate C., Boatman N.D., Borralho R.J., Carvalho C.R., de Snoo G.R. & Eden P. 2001. Ecological impacts of arable intensification in Europe. J. Environ. Manage. 63(4): 337–365. DOI: 10.1006/jema.2001.0473 http://dx.doi.org/10.1006/jema.2001.0473CrossrefGoogle Scholar

  • [53] Thomas C.D., Wilson R.J. & Lewis O.T. 2002. Short-term studies underestimate 30-generation changes in a butterfly metapopulation. Proc. Roy. Soc. Lond. Ser. B-Biol. Sci. 269(1491): 563–569. DOI: 10.1098/rspb.2001.1939 http://dx.doi.org/10.1098/rspb.2001.1939CrossrefGoogle Scholar

  • [54] Thomas J.A. 1993. Holocene climate changes and warm manmade refugia may explain why a 6th of British butterflies posess unnatural early-successional habitats. Ecography 16(3): 278–284. DOI: 10.1111/j.1600-0587.1993.tb00217.x http://dx.doi.org/10.1111/j.1600-0587.1993.tb00217.xCrossrefGoogle Scholar

  • [55] Thomas J.A., Bourn N.A.D., Clarke R.T., Stewart K.E., Simcox D.J., Pearman G.S., Curtis R. & Goodger B. 2001. The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc. R. Soc. Lond. Ser. B -Biol. Sci. 268(1478): 1791–1796. DOI: 10.1098/rspb.2001.1693 http://dx.doi.org/10.1098/rspb.2001.1693CrossrefGoogle Scholar

  • [56] Tolman T. & Lewington R. 2009. Collins Butterfly Guide: The Most Complete Guide to the Butterflies of Britain and Europe. Harper Collins Publishers, London, 384 pp. ISBN: 9780007279777 Google Scholar

  • [57] Turlure C., Choutt J., Van Dyck H., Baguette M. & Schtickzelle N. 2010. Functional habitat area as a reliable proxy for population size: case study using two butterfly species of conservation concern. J. Insect Conserv. 14(4): 379–388. DOI: 10.1007/s10841-010-9269-3 http://dx.doi.org/10.1007/s10841-010-9269-3CrossrefGoogle Scholar

  • [58] Van Swaay C., Cuttelod A., Collins S., Maes D., Lopez Munguira M., Sasic M., Settele J., Verovnik R., Verstrael R., Warren M., Wiemers M. & Wynhof I. 2010. European Red List of Butterflies. IUCN, Butterfly Conservation Europe, Publications Office of the European Union, Luxembourg, 44 pp. ISBN: 978-92-79-14151-5, DOI: 10.2779/83897 CrossrefGoogle Scholar

  • [59] Warren M.S., Hill J.K., Thomas J.A., Asher J., Fox R., Huntley B., Roy D.B., Telfer M.G., Jeffcoate S., Harding P., Jeffcoate G., Willis S.G., Greatorex-Davies J.N., Moss D. & Thomas C.D. 2001. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414(6859): 65–69. DOI: 10.1038/35102054 http://dx.doi.org/10.1038/35102054CrossrefGoogle Scholar

  • [60] Weidemann H.J. 1995. Tagfalter: beobachten, bestimmen, 2. Auflage [in diesem Band], Augsburg, 659 pp. ISBN: 3-89440-115-X Google Scholar

  • [61] Wenzel M., Schmitt T., Weitzel M. & Seitz A. 2006. The severe decline of butterflies on western German calcareous grasslands during the last 30 years: A conservation problem. Biol. Conserv. 128(4): 542–552. DOI: 10.1016/j.biocon.2005.10.022 http://dx.doi.org/10.1016/j.biocon.2005.10.022CrossrefGoogle Scholar

  • [62] Zsolt B. 2004. Fajmegörzési tervek. Csíkos boglárka (Polyommatus damon). Környezetvédelmi és Vízügyi Minisztérium, Természetvédelmi Hivatal, 13 pp. Google Scholar

About the article

Published Online: 2012-10-19

Published in Print: 2012-12-01


Citation Information: Biologia, Volume 67, Issue 6, Pages 1175–1185, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-012-0109-7.

Export Citation

© 2012 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Terezie Bubová, Vladimír Vrabec, Martin Kulma, and Piotr Nowicki
Journal of Insect Conservation, 2015, Volume 19, Number 5, Page 805
[2]
Alena Bartonova, Jiri Benes, Zdenek Faltynek Fric, Karel Chobot, and Martin Konvicka
Ecography, 2016, Volume 39, Number 5, Page 456
[3]
Jana Slancarova, Pavel Vrba, Michal Platek, Michal Zapletal, Lukas Spitzer, and Martin Konvicka
Journal of Natural History, 2015, Volume 49, Number 29-30, Page 1825
[4]
István Szentirmai, Attila Mesterházy, Ildikó Varga, Zoltán Schubert, Lehel Csaba Sándor, Levente Ábrahám, and Ádám Kőrösi
Journal of Insect Conservation, 2014, Volume 18, Number 3, Page 417
[5]
Jana Slancarova, Jiri Benes, Michal Kristynek, Pavel Kepka, and Martin Konvicka
Journal of Insect Conservation, 2014, Volume 18, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in