Jump to ContentJump to Main Navigation
Show Summary Details


IMPACT FACTOR 2015: 0.719
5-year IMPACT FACTOR: 0.740

SCImago Journal Rank (SJR) 2015: 0.322
Source Normalized Impact per Paper (SNIP) 2015: 0.510
Impact per Publication (IPP) 2015: 0.786

See all formats and pricing

Select Volume and Issue


Prevalence of β-lactam and fluoroquinolone resistance, and virulence factors in Escherichia coli isolated from chickens in Slovakia

1Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4, SK-04001, Košice, Slovakia

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Biologia. Volume 68, Issue 1, Pages 11–17, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-012-0142-6, December 2012

Publication History

Published Online:


The incidence of infections due to organisms resistant to β-lactam antibiotics has increased sharply in recent years. The goal of this study was to investigate the β-lactam resistance in 151 Escherichia coli strains isolated from chickens over a two-year period. Extended spectrum β-lactamases (ESBLs) were present in 24 strains (16%), ESBL phenotype was identified by interpretative reading of minimal inhibitory concentration values of ceftriaxon (CRT ≥ 7.1 mg/L), ceftazidime (CAZ ≥ 3.4 mg/L) and ceftiofur (CFF ≥ 8.7 mg/L). PCR detection revealed the presence of the bla CMY-2 gene and CTX-M-1 group. We detected high resistance to ampicillin (92%), streptomycin (63%), tetracyclin (70%), ceftiofur (40%), floroquinolones (enrofloxacin 68%, ciprofloxacin 62%), florfenicol (18%), chloramphenicol (21%) and cotrimoxazol (43%). We also investigated the presence of virulence factors and mobile genetic elements, and performed plasmid replicon typing in 24 selected strains. The most prevalent integrase among the isolates was the integrase 1 with gene cassettes dfrA, aadA and genes sul1 and sul2. Plasmid mediated quinolone resistances (qnrS) were also detected in two strains. Plasmid typing showed that the Y and IncI1 were dominant plasmid replicons. The genes iss, kpsII, tsh, iutA were the most frequently detected virulence genes in ESBL-positive strains. These results demonstrate that broilers in Slovakian food markets and farms could be the source of ESBL-producing E. coli, as well as virulent and resistant strains representing a potential risk for the human population.

Keywords: Escherichia coli; β-lactam resistance; virulence factors; mobile genetic elements; poultry

  • [1] Abbasoglu D. & Akcelik M. 2011. Phenotypic and genetic characterization of multidrug-resistant Salmonella infantis strains isolated from broiler chicken meats in Turkey. Biologia 66: 406–410. http://dx.doi.org/10.2478/s11756-011-0051-0 [Crossref]

  • [2] Bomba A., Jonecová Z., Koščová J., Nemcová R., Gancarčíková S., Mudroňová D., Sciranková Ľ., Buleca V., Lazar G. & Pošívák J. 2006. The improvement of probiotics efficacy by synergistically acting components of natural origin: a review. Biologia 61: 729–734. http://dx.doi.org/10.2478/s11756-006-0149-y [Crossref]

  • [3] Bradford P.A. 2001. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14: 933–951. http://dx.doi.org/10.1128/CMR.14.4.933-951.2001 [Crossref]

  • [4] Brinas L., Moreno M.A., Zarazaga M., Porrero C., Sáenz Y., Garcia M., Dominguez L. & Torres C. 2003. Detection of CMY-2, CTX-M-14, and SHV-12 β-lactamases in Escherichia coli fecal-samples isolates from healthy chickens. Antimicrob. Agents Chemother. 47: 2056–2058. http://dx.doi.org/10.1128/AAC.47.6.2056-2058.2003 [Crossref]

  • [5] Carattoli A., Bertini A., Villa L., Falbo V. & Hopkins K.L. 2005. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63: 219–228. http://dx.doi.org/10.1016/j.mimet.2005.03.018 [Crossref]

  • [6] Carattoli A., Fernández A. G., Varesi P., Fortini D., Gerardi S., Penni A., Mancini C. & Giordano A. 2008. Molecular epidemiology of Escherichia coli producing extended-spectrum β-lactamases isolated in Rome, Italy. J. Clin. Microbiol. 46: 103–108. http://dx.doi.org/10.1128/JCM.01542-07 [Crossref]

  • [7] Cocchi S., Grasselli E., Gutacker M., Benagli C., Convert M. & Piffaretti J.C. 2007. Distribution and characterization of integrons in Escherichia coli strains of animal and human origin. FEMS Immunol. Med. Microbiolol. 56: 126–132. http://dx.doi.org/10.1111/j.1574-695X.2007.00242.x [Crossref]

  • [8] Costa D., Vinue L., Poeta P., Coelho A. C., Matos M., Saenz Y., Somalo S., Zarazaga M., Rodrigues J. & Torres C. 2009. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli isolates in faecal samples of broilers. Vet. Microbiol. 138: 339–344. http://dx.doi.org/10.1016/j.vetmic.2009.03.029 [Crossref]

  • [9] Costa L., Radhouani H., Gomes C., Igrejas G. & Poeta P. 2010. High prevalence of extended-spectrum β-lactamases Escherichia coli and vancomycin-resistant Enterococci isolates from chicken products. A problem of public health. J. Food Safety 30: 141–153. [Crossref]

  • [10] Delicato E.R., de Britto B.G., Gaziri L.C. & Vidotto M.C. 2003. Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis. Vet. Microbiol. 94: 97–103. http://dx.doi.org/10.1016/S0378-1135(03)00076-2 [Crossref]

  • [11] De Verdier K., Nyman A., Greko C. & Bengtsson B. 2012. Antimicrobial resistance and virulence factors in Escherichia coli from Swedish dairy calves. Acta Vet. Scand. 54: 1–10. http://dx.doi.org/10.1186/1751-0147-54-1 [Crossref]

  • [12] Dolejska M., Cizek A. & Literak I. 2007. High prevalence of antimicrobial-resistant genes and integrons in Escherichia coli isolates from black-headed gulls in Czech republic. J. Appl. Microbiol. 103: 11–19. http://dx.doi.org/10.1111/j.1365-2672.2006.03241.x [Crossref]

  • [13] Dozois C.M., Dho-Moulin M., Brée A., Fairbrother J.M., Desautels C. & Curtiss III R. 2000. Relation between the Tsh autotransporter and pathogenicity of avian Escherichia coli and localization and analysis of the tsh genetic region. Infect. Immun. 68: 4145–4154. http://dx.doi.org/10.1128/IAI.68.7.4145-4154.2000 [Crossref]

  • [14] Drugdová Z., Kmeť V. & Bujňáková D. 2010. Virulence factors in Escherichia coli isolated from chicken meat in Slovakia. J. Food Nutr. Res. 49: 10–13.

  • [15] European Food Safety Authority (EFSA). 2011. Scientific opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases in food and food-producing animals. EFSA Panel on Biological Hazards (BIOHAZ). EFSA J. 9: 2322.

  • [16] Foley S.L., Home S.M., Giddings C.W., Robinson M. & Nolan L.K. 2000. Iss from a virulent avian Escherichia coli. Avian Diseases 44: 185–191. http://dx.doi.org/10.2307/1592523 [Crossref]

  • [17] Gattringer R., Nikš M., Ostertág R., Schwartz K., Medvedovic H., Graninger W. & Georpopoulos A. 2002. Evaluation of MIDITECH automated colorimetric MIC reading for antimicrobial susceptibility testing. J. Antimicrob. Chemother. 49: 651–659. http://dx.doi.org/10.1093/jac/49.4.651 [Crossref]

  • [18] Germon P., Chen Y.H., He L., Blanco J.E., Brée A. & Schouler S.H. 2005. IbeA, a virulence factor of avian pathogenic Escherichia coli. Microbiology 151: 1179–1186. http://dx.doi.org/10.1099/mic.0.27809-0 [Crossref]

  • [19] Guerra B., Junker E. & Helmut R. 2004. Incidence of the recently described sulfonamide resistance gene sul3 among german Salmonella enterica strains isolated from livestock and food. Antimicrob. Agents Chemother. 48: 2712–2715. http://dx.doi.org/10.1128/AAC.48.7.2712-2715.2004

  • [20] Guerra B., Junker E., Schroeter A., Malomy B., Lehmann S. & Helmuth R. 2003. Phenotypic and genotypic characterization of antimicrobial resistance in german Escherichia coli isolates from cattle, swine and poultry. J. Antimicrob. Chemother. 52: 489–492. http://dx.doi.org/10.1093/jac/dkg362 [Crossref]

  • [21] Guillaume G., Verbrugge D., Chasseur-Libotte M.L., Moens W. & Collard J.M. 2000. PCR typing of tetracycline resistance determinants (Tet A-E) in Salmonella enterica serotype Hadar and in the microbial community of activated sludges from hospital and urban wastewater treatment facilities in Belgium. FEMS Microbiol. Ecol. 32: 77–85.

  • [22] Hollingshead S. & Vapnek D. 1985. Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenyltransferase. Plasmid 13: 17–30. http://dx.doi.org/10.1016/0147-619X(85)90052-6 [Crossref]

  • [23] Chander Y., Oliviera S. & Goyal S.M. 2011. Characterisation of ceftiofur resistance in swine bacterial pathogens. Vet. J. 187: 139–141. http://dx.doi.org/10.1016/j.tvjl.2009.10.013 [Crossref]

  • [24] Johnson J.R., Kuskowski M.A., Smith K., O’Bryan T.T. & Tatini S. 2005. Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. J. Infect. Dis. 191: 1040–1049. http://dx.doi.org/10.1086/428451 [Crossref]

  • [25] Johnson J.R. & Stell A.L. 2000. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 181: 261–272. http://dx.doi.org/10.1086/315217 [Crossref]

  • [26] Kaper J.B., Nataro J.P. & Mobley H.L.T. 2004. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2: 123–140. http://dx.doi.org/10.1038/nrmicro818 [Crossref]

  • [27] Kerrn M.B., Klemmensen T., Frimodt-Moller N. & Espersen F. 2002. Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. J. Antimicrob. Chemother. 50: 513–516. Kmeť V. & Kmeťov in Escherichia coli from healthy chicken broilers. Folia Microbiol. 55: 79-82. http://dx.doi.org/10.1093/jac/dkf164 [Crossref]

  • [28] Kmeťová M., Siegfried L., Sabol M., Bogyiová E., Šandorčíová Z., Kerestešová A., Liptáková A. & Molokáčová M. 2001. Incidence and transfer of antibiotic resistance in clinical isolates of Escherichia coli. Biologia 56: 55–59.

  • [29] Kola A., Kohler C., Pfeifer Y., Schwab F., Kühn K., Schulz K., Balau V., Breitbach K., Bast A., Witte W., Gastmeier P., Steinmetz I. 2012. High prevalence of extended-spectrum-β-lactamase-producing Enterobacteriaceae in organic and conventional retail chicken meat, Germany. J. Antimicrob. Chemother. 67: 2631–2634. http://dx.doi.org/10.1093/jac/dks295 [Crossref]

  • [30] Lanz R., Kuhnert P. & Boerlin P. 2003. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet. Microbiol. 92: 73–78. http://dx.doi.org/10.1016/S0378-1135(02)00263-8 [Crossref]

  • [31] Le Bouguénec C., Archambaud M. & Labigne A. 1992. Rapid and specific detection of the pap, afa, and sfa adhesin-encoding operons in uropathogenic Escherichia coli strains by polymerase chain reaction. J. Clin. Microbiol. 30: 1189–1193.

  • [32] Lee J.C., Kang H.Y., Oh J.Y., Jeong J.H., Kim J.J., Seol S.Y., Cho D.T. & Lee Y.C. 2006. Antimicrobial resistance and integrons found in commensal Escherichia coli isolates from healthy humans. J. Bacteriol. Virol. 36: 133–139. http://dx.doi.org/10.4167/jbv.2006.36.3.133 [Crossref]

  • [33] Leverstein-van Hall M.A., Dierikx C.M., Stuart J.S., Voets G.M., Van den Munckhof M.P., Van Essen-Zandbergen A., Platteel T., Fluit A.C., Van den Sande-Bruinsma N., Scharinga J., Bonten M.J.M. & Mevius D.J. 2011. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin. Microbiol. Infect. 17: 873–880. http://dx.doi.org/10.1111/j.1469-0691.2011.03497.x [Crossref]

  • [34] Machado E., Coque T. M., Canton R., Sousa J.C. & Peixe L. 2008. Antibiotic resistance integrons and extended-spectrum β-lactamases among Enterobacteriaceae isolates recovered from chickens and swine in Portugal. J. Antimicrob. Chemother. 62: 296–302. http://dx.doi.org/10.1093/jac/dkn179 [Crossref]

  • [35] Mazel D., Dychinco B., Webb V.A. & Davies J. 2000. Antibiotic resistance in the ECOR collection: integrons and identification of a novel aad gene. Antimicrob. Agents Chemother. 44: 1568–1574. http://dx.doi.org/10.1128/AAC.44.6.1568-1574.2000 [Crossref]

  • [36] Miranda J.M., Vázguez B.I., Fente C.A., Barros-Velázguez J., Cepeda A. & Franco C.M. 2008. Evolution of resistance in poultry intestinal Escherichia coli during three commonly used antimicrobial therapeutic treatments in poultry. Poultry Science 87: 1643–1648. http://dx.doi.org/10.3382/ps.2007-00485 [Crossref]

  • [37] Navia M.M., Ruiz J., Sanchez-Cespedes J. & Vila J. 2003. Detection of dihydrofolate reductase genes by PCR and RFLP. Diagn. Microbiol. Infect. Dis. 46: 295–298. http://dx.doi.org/10.1016/S0732-8893(03)00062-2 [Crossref]

  • [38] Nsofor C.A. & Iroegbu C.U. 2012. Antibiotic resistance profile of Escherichia coli isolated from apparently healthy domestic livestock in South-East Nigeria. J. Cell Anim. Biol. 6: 129–135.

  • [39] Paterson D.L. 2006. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Med. 119: 20–28. http://dx.doi.org/10.1016/j.amjmed.2006.03.013 [Crossref]

  • [40] Peréz-Peréz F.J. & Hanson N.D. 2002. Detection of plasmidmediated AmpC-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40: 2153–2162. http://dx.doi.org/10.1128/JCM.40.6.2153-2162.2002 [Crossref]

  • [41] Pipová, M, Jevinová P., Kmeť V., Regecová I. & Marušková A. 2012. Antimicrobial resistance and species identification of staphylococci isolated from the meat of wild rabbits (Orictolagus cuniculus) in Slovakia. Eur. J. Wild. Res. 58: 157–165. http://dx.doi.org/10.1007/s10344-011-0558-2 [Crossref]

  • [42] Randall L.P., Clouting C., Horton R.A., Coldham G.W., Clifton-Hadley F.A., Davies R.H. & Teale C.J. 2011. Prevalence of Escherichia coli carrying extended-spectrum β-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in Great Britain between 2006 and 2009. J. Antimicrob. Chemother. 66: 86–95. http://dx.doi.org/10.1093/jac/dkq396 [Crossref]

  • [43] Robicsek A., Strahilevitz J., Sahm D.F., Jacoby G.A. & Hooper D.C. 2006. Qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob. Agents Chemother. 50: 2872–2874. http://dx.doi.org/10.1128/AAC.01647-05 [Crossref]

  • [44] Rodriguez-Siek K.E., Giddings C.W. & Doetkott C. 2005. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology 151: 2097–2110. http://dx.doi.org/10.1099/mic.0.27499-0 [Crossref]

  • [45] Song L., Bao N.Y., Zhong S.J., Zheng F.X., Ping Z.C., Huai Y.C. & Feng H.J. 2010. Investigation of integrons/cassettes in antimicrobial-resistant Escherichia coli isolated from food animals in China. Sci. China Life Sci. 53: 613–619. http://dx.doi.org/10.1007/s11427-010-0109-1 [Crossref]

  • [46] Šeputiene V., Povilonis J., Ružauskas M., Pavilonis A. & Sužiedeliene E. 2010. Prevalence of trimethoprim resistance genes in Escherichia coli isolates of human and animal origin in Lithuania. J. Med. Microbiol. 59: 315–322. http://dx.doi.org/10.1099/jmm.0.015008-0 [Crossref]

  • [47] Van den Bogaard A.E., London N., Driessen C. & Stobberingh E.E. 2001. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J. Antimicrob. Chemother. 47: 763–771. http://dx.doi.org/10.1093/jac/47.6.763 [Crossref]

  • [48] Van Essen-Zandbergen A., Smith H., Veldman K. & Mevius D. 2007. Occurence and characteristics of class 1, 2 and 3 integrons in Escherichia coli, Salmonella and Campylobacter spp. in the Netherlands. J. Antimicrob. Chemother. 59: 746–750. http://dx.doi.org/10.1093/jac/dkl549

  • [49] Van T.T.H., Moutafis G., Tran L.T. & Coloe P.J. 2007. Antibiotic resistance in food-borne bacterial contaminants in Vietnam. Appl. Environ. Microbiol. 73: 7906–7911. http://dx.doi.org/10.1128/AEM.00973-07 [Crossref]

  • [50] Wasyl D., Hasman H., Cavaco L.M. & Aarestrup F.M. 2012. Prevalence and characterization of cephalosporin resistance in nonpathogenic Escherichia coli from food-producing animals slaughtered in Poland. Microb. Drug Resist. 18: 79–82. http://dx.doi.org/10.1089/mdr.2011.0033 [Crossref]

  • [51] Weill F.W., Demartin M., Fabre L. & Grimot P.A.D. 2004. Extended-spectrum-β-lactamase (TEM-52)-producing strains of Salmonella enterica of various serotypes isolated in France. J. Clin. Microbiol. 42: 3359–3362. http://dx.doi.org/10.1128/JCM.42.7.3359-3362.2004 [Crossref]

  • [52] White D.G. 2006. Antimicrobial resistance in pathogenic Escherichia coli from animals, pp. 145–167. In: Aarestrup F.M. (ed.), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington.

  • [53] Zarnayová M., Siebor E., Pechinot A., Duez J.M., Bujdaková H., Labia R. & Neuwirth C. 2005. Survey of Enterobacteriaceae producing extended-spectrum β-lactamases in a Slovakian hospital: dominance of SHV-2a and characterization of TEM-132. Antimicrob. Agents Chemother. 49: 3066–3069. http://dx.doi.org/10.1128/AAC.49.7.3066-3069.2005 [Crossref]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Silvie Pavlickova, Magda Dolezalova, and Ivan Holko
Journal of Environmental Science and Health, Part B, 2015, Volume 50, Number 6, Page 417

Comments (0)

Please log in or register to comment.