Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 68, Issue 2

Issues

Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment

Jinglong Jiang
  • MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
  • School of Biological Science and Engineering, Shanxi University of technology, Hanzhong, 723000, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miao Su
  • MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yueru Chen
  • MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nan Gao
  • MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chengjin Jiao
  • MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
  • School of Life Science and Chemistry, Tianshui Normal University, Tianshui, 741001, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhengxi Sun
  • MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fengmin Li
  • State Key Laboratory of Glassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chongying Wang
  • MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-02-23 | DOI: https://doi.org/10.2478/s11756-013-0003-y

Abstract

Grass pea (Lathyrus sativus L.), a legume crop in arid and semi-arid areas, is widely acknowledged as highly drought tolerant. We report here an analysis of grass pea and garden pea seedlings stressed with 20% polyethylene glycol 6000 (PEG) for five days. While leaf margins of grass pea curled inward after PEG stress, leaves of pea failed to display this trait. PEG inhibited the growth of grass pea less than that of pea. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) accumulation increased in pea more than in grass pea. Greater accumulation of proline and soluble sugars alleviated osmotic stress injury to grass pea compared with pea. Moreover, PEG caused a significantly greater increase of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GPX) activities in grass pea compared to pea. These enzymes showed obvious up-regulation at the transcriptional level in grass pea leaves. Together, these data suggest that the accumulation of osmoprotectants and the improvement of oxidation resistance resulted in the higher drought tolerance of grass pea compared to pea.

Keywords: Pisum sativum L.; PEG 6000; osmoprotectants; ROS; leaf rolling

  • [1] Al Hakimi A., Monneveux P. & Galiba G. 1995. Soluble sugars, proline and relative water content (RWC) as traits for improving drought tolerance and divergent selection for RWC from T. polonicum into T. durum. J. Genet. Breed. 49: 237–244. Google Scholar

  • [2] Arakawa N., Tsutsumi K., Sanceda N.G., Kurata T. & Inagaki C. 1981. Rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-l,10-phenanthroline. Agr. Biol. Chem. 45: 1289–1290. http://dx.doi.org/10.1271/bbb1961.45.1289CrossrefGoogle Scholar

  • [3] Ashraf M. & Foolad M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59: 206–216. http://dx.doi.org/10.1016/j.envexpbot.2005.12.006CrossrefGoogle Scholar

  • [4] Barba-Espin G., Diaz-Vivancos P., Clemente-Moreno M.J., Albacete A., Faize L., Faize M., Perez-Alfocea F. & Hernandez J.A. 2010. Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ. 33: 981–994. http://dx.doi.org/10.1111/j.1365-3040.2010.02120.xCrossrefGoogle Scholar

  • [5] Beauchamp C. & Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gel. Anal. Chem. 44: 276–287. Google Scholar

  • [6] Bor M., Ozdemir F. & Turkan I. 2003. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci. 164: 77–84. http://dx.doi.org/10.1016/S0168-9452(02)00338-2CrossrefGoogle Scholar

  • [7] Boyer J.S. 1982. Plant productivity and environment. Science 218: 443–448 http://dx.doi.org/10.1126/science.218.4571.443CrossrefGoogle Scholar

  • [8] Campbell C.G., Mehra R.B., Agrawal S.K., Chen Y.Z., El Ali A.M. A., Khawaja H.I.T., Yadav C.R., Toy J. & Araya W.A. 1994. Current status and future strategy in breeding grass pea (Lathyrus sativus). Euphytic 73: 167–175. http://dx.doi.org/10.1007/BF00027192CrossrefGoogle Scholar

  • [9] Caruso A., Chefdor F., Carpin S., Depierreux C., Delmotte F. M., Kahlem G. & Morabito D. 2008. Physiological characterization and identification of genes differentially expressed in response to drought induced by PEG 6000 in Populus Canadensis leaves. J. Plant Physiol. 165: 932–941. http://dx.doi.org/10.1016/j.jplph.2007.04.006CrossrefGoogle Scholar

  • [10] Chaves M. M., Maroco J. P. & Pereira J. S. 2003. Understanding plant responses to drought — from genes to the whole plant. Funct. Plant Biol. 30: 239–264. http://dx.doi.org/10.1071/FP02076CrossrefGoogle Scholar

  • [11] Couee I., Sulmon C., Gouesbet G. & El Amrani A. 2006. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 57: 449–459. http://dx.doi.org/10.1093/jxb/erj027CrossrefGoogle Scholar

  • [12] Diaz-Vivancos P., Barba-Espin G., Clemente-Moreno M.J. & Hernandez J.A. 2010. Characterization of the antioxidant system during the vegetative development of pea plants. Biol. Plant. 54: 76–82. http://dx.doi.org/10.1007/s10535-010-0011-5CrossrefGoogle Scholar

  • [13] Dingkuhn M., Audebert A.Y., Jones M.P., Etienne K. & Sow A. 1999. Control of stomatal conductance and leaf rolling in Oryza sativa and O. glaberrima upland rice. Field Crop. Res. 61: 223–236. http://dx.doi.org/10.1016/S0378-4290(98)00165-8CrossrefGoogle Scholar

  • [14] Dubois M., Giles K.A., Hamilton J.K., Roberes P.A. & Smith F. 1956. Colorometric method for determination of sugars and related substances. Anal. Chem. 28: 350–356. http://dx.doi.org/10.1021/ac60111a017CrossrefGoogle Scholar

  • [15] Edreva A. 2005. Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agr. Ecosyst. Environ. 106: 119–133. http://dx.doi.org/10.1016/j.agee.2004.10.022CrossrefGoogle Scholar

  • [16] Farooq M., Basra S.M.A., Wahid A., Ahmad N. & Saleem B.A. 2009. Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J. Agron. Crop Sci. 195: 237–246. http://dx.doi.org/10.1111/j.1439-037X.2009.00365.xCrossrefGoogle Scholar

  • [17] Gebre G.M., Brandle J.R. & Kuhns M.R. 1997. Influence of rewatering and time of sampling on solute accumulation of two Populus deltoides clones. Tree Physiol. 17: 341–346. http://dx.doi.org/10.1093/treephys/17.5.341CrossrefGoogle Scholar

  • [18] Hanbury C.D., White C.L., Mullan B.P. & Siddique K.H.M. 2000. A review of the potential of Lathyrus sativus L. and L. Cicera L. grain for use as animal feed. Anim. Feed Sci. Tech. 87: 1–27. http://dx.doi.org/10.1016/S0377-8401(00)00186-3CrossrefGoogle Scholar

  • [19] Huang A.Y. & Wu Z.L. 1999. Determination of glutathione peroxidase in rice seedlings. J. Southwest Agr. Univ. 21: 324–327. Google Scholar

  • [20] Jackson M.B., Hall K.C. & Ashton L. 1987. Early stomatal closure in AA/aterlogged pea plants is mediated by abscisic acid in the absence of foliar xA/ater deficits. Plant Cell Environ. 10: 121–130. Google Scholar

  • [21] Jiao C.J., Jiang J.L., Ke L.M., Cheng W., Li F.M., Li Z.X. & Wang C.Y. 2011a. Factors affecting beta-ODAP content in Lathyrus sativus and their possible physiological mechanisms. Food Chem. Toxicol. 49: 543–549. http://dx.doi.org/10.1016/j.fct.2010.04.050CrossrefGoogle Scholar

  • [22] Jiao C.J., Jiang J.L., Li C., Ke L.M., Cheng W., Li F.M., Li Z.X. & Wang C.Y. 2011b. beta-ODAP accumulation could be related to low levels of superoxide anion and hydrogen peroxide in Lathyrus sativus L. Food Chem. Toxicol. 49: 556–562. http://dx.doi.org/10.1016/j.fct.2010.05.054CrossrefGoogle Scholar

  • [23] Jiao C.J., Xu Q.L., Wang C.Y., Li F.M., Li Z.X. & Wang Y.F. 2006. Accumulation pattern of toxin beta-ODAP during lifespan and effect of nutrient elements on beta-ODAP content in Lathyrus sativus seedlings. J. Agr. Sci. 144: 369–375. http://dx.doi.org/10.1017/S0021859606006265CrossrefGoogle Scholar

  • [24] Khanna-Chopra R. & Selote D.S. 2007. Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions. Environ. Exp. Bot. 60: 276–283. http://dx.doi.org/10.1016/j.envexpbot.2006.11.004CrossrefGoogle Scholar

  • [25] Kocheva K.V., Georgiev G.I. & Kochev V. K. 2005. A diffusion approach to the electrolyte leakage from plant tissues. Physiol. Plant. 125: 1–9. http://dx.doi.org/10.1111/j.1399-3054.2005.00533.xCrossrefGoogle Scholar

  • [26] Kocheva K.V., Kartseva T., Landjeva S. & Georgiev G.I. 2009. Physiological response of wheat seedlings to mild and severe osmotic stress. Cereal Res. Commun. 37: 199–208. http://dx.doi.org/10.1556/CRC.37.2009.2.6CrossrefGoogle Scholar

  • [27] Korus J., Wituak M., Juszczak L. & Ziobro R. 2008. Grass pea (Lathyrus sativus L.) starch as an alternative for cereal starches: Rheological properties and retrogradation susceptibility. J. Food Eng. 88: 528–534. http://dx.doi.org/10.1016/j.jfoodeng.2008.03.018CrossrefGoogle Scholar

  • [28] Landjeva S., Korzun V., Stoimenova E., Truberg B., Ganeva G. & Borner A. 2008. The contribution of the gibberellin-insensitive semi-dwarfing (Rht) genes to genetic variation in wheat seedling growth in response to osmotic stress. J. Agric. Sci. 146: 275–286. http://dx.doi.org/10.1017/S0021859607007575CrossrefGoogle Scholar

  • [29] Lang Y.Z., Zhang Z.J., Gu X.Y., Yang J.C. & Zhu Q.S. 2004. A physiological and ecological effect of crimpy leaf character in rice (Oryza sativa L.) II. Photosynthetic character, dry mass production and yield forming. Acta Agron. Sin. 30: 883–887. Google Scholar

  • [30] Lei Y., Yin C. & Li C. 2006. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol. Plant. 127: 182–191. http://dx.doi.org/10.1111/j.1399-3054.2006.00638.xCrossrefGoogle Scholar

  • [31] Mishra N.P., Mishra R.K. & Singhal C.S. 1993. Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol. 102: 903–910. Google Scholar

  • [32] Moller I.M., Jensen P.E. & Hansson A. 2007. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58: 459–481. http://dx.doi.org/10.1146/annurev.arplant.58.032806.103946CrossrefGoogle Scholar

  • [33] Morgan J. 1984. Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 35: 299–319. http://dx.doi.org/10.1146/annurev.arplant.35.1.299CrossrefGoogle Scholar

  • [34] Moskova I., Todorova D., Alexieva V., Ivanov S. & Sergiev I. 2009. Effect of exogenous hydrogen peroxide on enzymatic and nonenzymatic antioxidants in leaves of young pea plants treated with paraquat. Plant Growth Regul. 57: 193–202. http://dx.doi.org/10.1007/s10725-008-9336-xCrossrefGoogle Scholar

  • [35] Navrot N., Rouhier N., Gelhaye E. & Jacquot J.P. 2007. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 129: 185–195. http://dx.doi.org/10.1111/j.1399-3054.2006.00777.xCrossrefGoogle Scholar

  • [36] Nayer M. & Reza H. 2008. Drought-induced accumulation of soluble sugars and proline in two maize varieties. World Appl. Sci. J. 3: 448–453. Google Scholar

  • [37] Nayyar H. & Walia D.P. 2003. Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biol. Plant. 46: 275–279. http://dx.doi.org/10.1023/A:1022867030790CrossrefGoogle Scholar

  • [38] Okcu G., Kaya M.D. & Atak M. 2005. Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk. J. Agr. For. 29: 237–242. Google Scholar

  • [39] Peng J., Wang D.Y., Xu C.M., Chen L.P., Deng F. & Zhang X.F. 2009. Ammonium molybdate method for detecting the activities of rice catalase. Chin. Agr. Sci. Bull. 25: 61–64. Google Scholar

  • [40] Pomar F., Caballero N., Pedreno M.A. & Barcelo A.R. 2002. H2O2 generation during the auto-oxidation of coniferyl alcohol drives the oxidase activity of a highly conserved class III peroxidase involved in lignin biosynthesis. FEBS Lett. 529: 198–202. http://dx.doi.org/10.1016/S0014-5793(02)03339-2CrossrefGoogle Scholar

  • [41] Rampino P., Pataleo S., Gerardi C., Mita G. & Perrotta C. 2006. Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ. 29: 2143–2152. http://dx.doi.org/10.1111/j.1365-3040.2006.01588.xCrossrefGoogle Scholar

  • [42] Rao S.L.N. 2011. A look at the brighter facets of β-N-oxalyl-l-α, β-diaminopropionic acid, homoarginine and the grass pea. Food Chem. Toxicol. 49: 620–622. http://dx.doi.org/10.1016/j.fct.2010.06.054CrossrefGoogle Scholar

  • [43] Rodriguez-Serrano M., Romero-Puertas M.C., Zabalza A., Corpas F.J., Gomez M., Del Rio L.A. & Sandalio L.M. 2006. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ. 29: 1532–1544. http://dx.doi.org/10.1111/j.1365-3040.2006.01531.xCrossrefGoogle Scholar

  • [44] Schroeder H.E., Schotz A.H., Richardson T.W., Spencer D. & Higgins T.J.V. 1993. Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol. 101: 751–757. http://dx.doi.org/10.1104/pp.101.2.451CrossrefGoogle Scholar

  • [45] Shalata A., Mittova V., Volokita M., Guy M. & Tal M. 2001. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiol. Plant. 112: 487–494. http://dx.doi.org/10.1034/j.1399-3054.2001.1120405.xCrossrefGoogle Scholar

  • [46] Singh M.R., Pratap Rudra M.P., Rao S.L.N. & Singh S.S. 2004. In vitro activation of protein kinase C by β-N-oxalyl-L-a, β-diaminopropionic acid, the Lathyrus sativus neurotoxin. Neurochem. Res. 29: 1343–1348. http://dx.doi.org/10.1023/B:NERE.0000026395.25468.57CrossrefGoogle Scholar

  • [47] Turgut R. & Kadioglu A. 1998. The effect of drought, temperature and irradiation on leaf rolling in Ctenanthe setosa. Biol. Plant. 41: 629–633. http://dx.doi.org/10.1023/A:1001817105685CrossrefGoogle Scholar

  • [48] Turkan I., Bor M., Ozdemir F. & Koca H. 2005. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 168: 223–231. http://dx.doi.org/10.1016/j.plantsci.2004.07.032CrossrefGoogle Scholar

  • [49] Turner N.C. 1981. Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58: 339–366. http://dx.doi.org/10.1007/BF02180062CrossrefGoogle Scholar

  • [50] Valliyodan B. & Nguyen H.T. 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 9: 189–195. http://dx.doi.org/10.1016/j.pbi.2006.01.019CrossrefGoogle Scholar

  • [51] Vaz Patto M.C., Skiba B., Pang E.C.K., Ochatt S.J., Lambein F. & Rubiales D. 2006. Lathyrus improvement for resistance against biotic and abiotic stresses: From classical breeding to marker assisted selection. Euphytica 147: 133–147. http://dx.doi.org/10.1007/s10681-006-3607-2CrossrefGoogle Scholar

  • [52] Zhang G.H., Xu Q., Zhu X.D., Qian Q. & Xue H.W. 2009. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell 21: 719–735. http://dx.doi.org/10.1105/tpc.108.061457CrossrefGoogle Scholar

About the article

Published Online: 2013-02-23

Published in Print: 2013-04-01


Citation Information: Biologia, Volume 68, Issue 2, Pages 231–240, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-013-0003-y.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sagarika Mishra, Sanjib K Panda, and Lingaraj Sahoo
Reviews in Agricultural Science, 2014, Volume 2, Number 0, Page 21
[3]
Arjun L. Khandare, R. Hari Kumar, I.I. Meshram, N. Arlappa, A. Laxmaiah, K. Venkaiah, P. Amrutha Rao, Vakdevi Validandi, and G.S. Toteja
Toxicon, 2018, Volume 150, Page 228
[4]
Divya Rathi, Akanksha Pareek, Saurabh Gayali, Subhra Chakraborty, and Niranjan Chakraborty
Journal of Proteomics, 2018, Volume 183, Page 45
[5]
Deli WANG, Ling WANG, Jushan LIU, Hui ZHU, and Zhiwei ZHONG
Frontiers of Agricultural Science and Engineering, 2018, Volume 5, Number 1, Page 24
[8]
Wang Lin, Jie Hou, Honghui Guo, Li Li, Lingkai Wang, Dandan Zhang, Dapeng Li, and Rong Tang
Environmental Pollution, 2018, Volume 235, Page 197
[9]
Xiaopeng Hao, Tao Yang, Rong Liu, Jinguo Hu, Yang Yao, Marina Burlyaeva, Yan Wang, Guixing Ren, Hongyan Zhang, Dong Wang, Jianwu Chang, and Xuxiao Zong
Frontiers in Plant Science, 2017, Volume 8
[10]
Barbara Piwowarczyk, Krzysztof Tokarz, Wojciech Makowski, and Aneta Łukasiewicz
Acta Physiologiae Plantarum, 2017, Volume 39, Number 4
[11]
Wenjin Zhang, Zhicai Xie, Lianhong Wang, Ming Li, Duoyong Lang, and Xinhui Zhang
Journal of Plant Research, 2017, Volume 130, Number 3, Page 611
[12]
Jǖgang Wang, Rong Zheng, Shulan Bai, Xiaomin Gao, Min Liu, Wei Yan, and Zhulong Chan
PLOS ONE, 2015, Volume 10, Number 4, Page e0124442
[13]
Quanle Xu, Fengjuan Liu, Peng Chen, Joseph Jez, and Hari Krishnan
International Journal of Molecular Sciences, 2017, Volume 18, Number 3, Page 526
[15]
Tomasz Hura, Michał Dziurka, Katarzyna Hura, Agnieszka Ostrowska, and Kinga Dziurka
Journal of Plant Physiology, 2016, Volume 202, Page 1
[16]
Hamid-Reza Fallahi, Golsoom Fadaeian, Marziyeh Gholami, Omolbanin Daneshkhah, Fatemeh Sadat Hosseini, Mahsa Aghhavani-Shajari, and Alireza Samadzadeh
Plant Breeding and Seed Science, 2015, Volume 71, Number 1
[17]
Bindumadhava HanumanthaRao, Ramakrishnan M. Nair, and Harsh Nayyar
Frontiers in Plant Science, 2016, Volume 7
[18]
Lina Zhou, Wei Cheng, Hongzhou Hou, Renyi Peng, Na Hai, Zhiyuan Bian, Chengjin Jiao, and Chongying Wang
Journal of Plant Growth Regulation, 2016, Volume 35, Number 3, Page 690
[19]
Abdelghani Chakhchar, Said Wahbi, Mouna Lamaoui, Abderrahim Ferradous, Abdelhamid El Mousadik, Saad Ibnsouda-Koraichi, Abdelkarim Filali-Maltouf, and Cherkaoui El Modafar
Journal of Plant Interactions, 2015, Volume 10, Number 1, Page 252
[20]
Kamrun Nahar, Mirza Hasanuzzaman, Md. Mahabub Alam, and Masayuki Fujita
AoB Plants, 2015, Volume 7, Page plv069
[21]
Yin Ling Luo, Zhi Long Su, Xian Liang Cui, and Qin Ying Lan
Israel Journal of Plant Sciences, 2015, Volume 62, Number 3, Page 153
[22]
Susana S. Araújo, Steve Beebe, Martin Crespi, Bruno Delbreil, Esther M. González, Veronique Gruber, Isabelle Lejeune-Henaut, Wolfgang Link, Maria J. Monteros, Elena Prats, Idupulapati Rao, Vincent Vadez, and Maria C. Vaz Patto
Critical Reviews in Plant Sciences, 2015, Volume 34, Number 1-3, Page 237
[23]
Susana Silvestre, Susana de Sousa Araújo, Maria Carlota Vaz Patto, and Jorge Marques da Silva
Journal of Integrative Plant Biology, 2014, Volume 56, Number 7, Page 610
[24]
Wei Cheng, Liang Zhang, Chengjin Jiao, Miao Su, Tao Yang, Lina Zhou, Renyi Peng, Ranran Wang, and Chongying Wang
Plant Physiology and Biochemistry, 2013, Volume 70, Page 278

Comments (0)

Please log in or register to comment.
Log in