Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 68, Issue 2

Issues

Biodegradation of cyanide by Rhodococcus UKMP-5M

Maegala Nallapan Maniyam
  • Institute of Bio-It Selangor, Universiti Selangor, Jalan Zirkon A 7/A, Seksyen 7, 40 000, Shah Alam, Selangor Darul Ehsan, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fridelina Sjahrir
  • Institute of Bio-It Selangor, Universiti Selangor, Jalan Zirkon A 7/A, Seksyen 7, 40 000, Shah Alam, Selangor Darul Ehsan, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abdul Ibrahim
  • Institute of Bio-It Selangor, Universiti Selangor, Jalan Zirkon A 7/A, Seksyen 7, 40 000, Shah Alam, Selangor Darul Ehsan, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anthony Cass
Published Online: 2013-02-23 | DOI: https://doi.org/10.2478/s11756-013-0158-6

Abstract

A new bacterial strain, Rhodococcus UKMP-5M isolated from petroleum-contaminated soils demonstrated promising potential to biodegrade cyanide to non-toxic end-products. Ammonia and formate were found as final products during growth of the isolate with KCN as the sole nitrogen source. Formamide was not detected as one of the end-products suggesting that the biodegradation of cyanide by Rhodococcus UKMP-5M may have proceeded via a hydrolytic pathway involving the bacterial enzyme cyanidase. No growth of the bacterium was observed when KCN was supplied as the sole source of carbon and nitrogen even though marginal reduction in the concentration of cyanide was recorded, indicating the toxic effect of cyanide even in cyanide-degrading microorganisms. The cyanide biodegradation ability of Rhodococcus UKMP-5M was greatly affected by the presence of organic nutrients in the medium. Medium containing glucose and yeast extract promoted the highest growth rate of the bacterium which simultaneously assisted complete biodegradation of 0.1 mM KCN within 24 hours of incubation. It was found that growth and cyanide biodegradation occurred optimally at 30°C and pH 6.3 with glucose as the preferred carbon source. Acetonitrile was used as an inducer to enhance cyanide biodegradation since the enzymes nitrile hydratase and/or nitrilase have similarity at both the amino acid and structural levels to that of cyanidase. The findings from this study should be of great interest from an environmental and health point of views since the optimum conditions discovered in the present study bear a close resemblance to the actual scenario of cyanide wastewater treatment facilities.

Keywords: cyanide biodegradation; Rhodococcus UKMP-5M; cyanidase; ammonia; formate

  • [1] Adams D.J., Van Komen J. & Pickett T.M. 2001. Biological cyanide degradation, pp. 203–213. In: Young C. (ed.), Cyanide: Social, Industrial and Economic Aspects. The Metals Society, Warrendale. Google Scholar

  • [2] Adjei M.D. & Ohta Y. 1999. Isolation and characterization of a cyanide-utilizing Burkholderia cepacia strain. World J. Microbiol. Biotechnol. 15: 699–704. http://dx.doi.org/10.1023/A:1008924032039CrossrefGoogle Scholar

  • [3] Adjei M.D. & Ohta Y. 2000. Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C-3. J. Biosci. Bioeng. 89: 274–277. http://dx.doi.org/10.1016/S1389-1723(00)88833-7CrossrefGoogle Scholar

  • [4] Akcil A. 2003. Destruction of cyanide in gold mill effluents: biological versus chemical treatments. Biotechnol. Adv. 21: 501–510. http://dx.doi.org/10.1016/S0734-9750(03)00099-5CrossrefGoogle Scholar

  • [5] Akcil A., Karahan A.G., Ciftci H. & Sagdic O. 2003. Biological treatment of cyanide by natural isolated bacteria (Pseudomonas species). Miner. Eng. 16: 643–649. http://dx.doi.org/10.1016/S0892-6875(03)00101-8CrossrefGoogle Scholar

  • [6] Akcil A. & Mudder T. 2003. Microbial destruction of cyanide wastes in gold mining: process review. Biotechnol. Lett. 25: 445–450. http://dx.doi.org/10.1023/A:1022608213814CrossrefGoogle Scholar

  • [7] Barclay M., Tett V.A. & Knowles C.J. 1998. Metabolism and enzymology of cyanide/metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions. Enzyme Microb. Technol. 23: 321–330. http://dx.doi.org/10.1016/S0141-0229(98)00055-6CrossrefGoogle Scholar

  • [8] Baxter J. & Cummings S.P. 2006. The current and future applications of microorganism in the bioremediation of cyanide contamination. Antonie van Leeuwenhoek 19: 1–17. http://dx.doi.org/10.1007/s10482-006-9057-yCrossrefGoogle Scholar

  • [9] Botz M., Mudder T. & Akcil A. 2005. Cyanide treatment: physical, chemical and biological processes, pp. 672–700. In: Adams M. (ed.) Advances in Gold Ore Processing, Chapter 15. Elsevier, Amsterdam. http://dx.doi.org/10.1016/S0167-4528(05)15028-5CrossrefGoogle Scholar

  • [10] Cabuk A., Unal A.T. & Kolankaya N. 2006. Biodegradation of cyanide by a white rot fungus, Trametes versicolor. Biotechnol. Lett. 28: 1313–1317. http://dx.doi.org/10.1007/s10529-006-9090-yCrossrefGoogle Scholar

  • [11] Dash R.R., Gaur A. & Balomajumder C. 2009. Cyanide in industrial wastewaters and its removal: a review on biotreatment. J. Hazard. Mater. 163: 1–11. http://dx.doi.org/10.1016/j.jhazmat.2008.06.051CrossrefWeb of ScienceGoogle Scholar

  • [12] Dorr P.K. & Knowles C.J. 1989. Cyanide oxygenase and cyanase activities of Pseudomonas fluorescens NCIMB 11764. FEMS Microbiol. Lett. 60: 289–294. http://dx.doi.org/10.1111/j.1574-6968.1989.tb03488.xCrossrefGoogle Scholar

  • [13] Dumestre A., Chone T., Portal J.M., Gerard M. & Berthelin J. 1997. Cyanide degradation under alkaline conditions by a strain of Fusarium solani isolated from contaminated soils. Appl. Environ. Microbiol. 63: 2729–2734. Google Scholar

  • [14] Ezzi M.I. & Lynch J.M. 2005. Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzyme Microb. Technol. 36: 849–854. http://dx.doi.org/10.1016/j.enzmictec.2004.03.030CrossrefGoogle Scholar

  • [15] Fawcett J.K & Scott J.E. 1960. A rapid and precise method for the determination of the urea. J. Clin. Pathol. 13: 156–159. http://dx.doi.org/10.1136/jcp.13.2.156CrossrefGoogle Scholar

  • [16] Goncalves M.M.M., Pinto A.F. & Granato M. 1998. Biodegradation of free cyanide, thiocyanate and metal complexed cyanides in solutions with different compositions. Environ. Technol. 19: 133–142. http://dx.doi.org/10.1080/09593331908616665CrossrefGoogle Scholar

  • [17] Goswami M., Shivaraman N. & Singh R.P. 2002. Kinetics of chlorophenol degradation by benzoate-induced culture of Rhodococcus erythropolis M1. World J. Microbiol. Biotechnol. 18: 779–783. http://dx.doi.org/10.1023/A:1020429109524CrossrefGoogle Scholar

  • [18] Gupta N., Balomajumder C. & Agarwal V.K. 2010. Enzymatic mechanism and biochemistry for cyanide degradation: a review. J. Hazard. Mater. 176: 1–13. http://dx.doi.org/10.1016/j.jhazmat.2009.11.038Web of ScienceCrossrefGoogle Scholar

  • [19] Harris R. & Knowles C.J. 1983. Isolation and growth of a Pseudomonas species that utilizes cyanide as a source of nitrogen. J. Gen. Microbiol. 129: 1005–1011. CrossrefGoogle Scholar

  • [20] Hong Y.L. 2007. Dissipation of cyanide contaminants in the rhizosphere environment. Ph.D Thesis. Purdue University. Google Scholar

  • [21] Hossain S.M., Das M., Begum K.M.M.S. & Anantharaman N. 2005. Studies on biodegradation of cyanide (AgCN) using Phanerochaete chrysosporium. J. Institution Engineers 85: 45–49. Google Scholar

  • [22] Ingvorsen K., Hojer-Pedersen B. & Godtfredsen S.E. 1991. Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans. Appl. Environ. Mirobiol. 57: 1783–1789. Google Scholar

  • [23] Kao C.M., Liu J.K., Lou H.R., Lin C.S. & Chen S.C. 2003. Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca. Chemosphere 50: 1055–1061. http://dx.doi.org/10.1016/S0045-6535(02)00624-0CrossrefGoogle Scholar

  • [24] Keusgen M., Milka P. & Krest I. 2001. Cyanidase from bacterial sources and its potential for the construction of biosensors. Proceedings of the Biosensor Symposium. Tubingen, Germany. Google Scholar

  • [25] Kunz D.A., Nagappan O., Silva-Avalos J. & Delong G.T. 1992. Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: evidence for multiple pathways of metabolic conversion. Appl. Environ. Microbiol. 58: 2022–2029. Google Scholar

  • [26] Kwon H.K., Woo S.H. & Park J.M. 2002. Degradation of tetracyaninickelate (II) by Cryptococcus humicolus MCN2. FEMS Microbiol. Lett. 214: 211–216. http://dx.doi.org/10.1111/j.1574-6968.2002.tb11349.xCrossrefGoogle Scholar

  • [27] Lee C.K. & Low K.S. 1980. A study of wastewater discharge from electroplating factories. Pertanika 3: 159–161. Google Scholar

  • [28] Mak K.K.W., Law A.W.C., Tokuda S., Yanase H. & Renneberg R. 2005. Application of cyanide hydrolase from Klebsiella sp. in a biosensor system for the detection of low-level cyanide. Appl. Microbiol. Biotechnol. 67: 631–636. http://dx.doi.org/10.1007/s00253-004-1825-xCrossrefGoogle Scholar

  • [29] Mudder T.I. & Botz M.M. 2004. Cyanide and society: a critical review. Eur. J. Miner. Process. Environ. Prot. 4: 62–74. Google Scholar

  • [30] Mudder T.I., Botz M.M. & Smith A. 2001. Chemistry and Treatment of Cyanidation Wastes, 2nd Edition. Mining Journal Books, London. Google Scholar

  • [31] Nagashima S. 1977. Spectrophotometric determination of cyanide with γ-picoline and barbituric acid. Anal. Chim. Acta. 91: 303–306. http://dx.doi.org/10.1016/S0003-2670(01)93673-6CrossrefGoogle Scholar

  • [32] Nallapan Maniyam M., Sjahrir F. & Ibrahim A.L. 2011. Bioremediation of cyanide by optimized resting cells of Rhodococcus strains isolated from Peninsular Malaysia. Int. J. Biosci. Biochem. Bioinform. 1: 98–101. Google Scholar

  • [33] Nallapan Maniyam M., Sjahrir F. & Ibrahim A.L. 2012. Cyanide degradation by immobilized cells of Rhodococcus UKMP-5M. Biologia 67: 837–844. http://dx.doi.org/10.2478/s11756-012-0098-6Web of ScienceCrossrefGoogle Scholar

  • [34] Nolan L.M., Harnedy P.A., Turner P., Hearne A.B. & O’Reilly C. 2003. The cyanide hydratase enzyme of Fusarium lateritium also has nitrilase activity. FEMS Microbiol. Lett. 221: 161–165. http://dx.doi.org/10.1016/S0378-1097(03)00170-8CrossrefGoogle Scholar

  • [35] Patil Y.B. & Paknikar K.M. 2000. Biodetoxification of sivercyanide from electroplating industry wastewater. Lett. Appl. Microbiol. 30: 33–37. http://dx.doi.org/10.1046/j.1472-765x.2000.00648.xCrossrefGoogle Scholar

  • [36] Sharma S.L. & Pant A. 2001. Crude oil degradation by a marine actinomycete Rhodococcus sp. Ind. J. Marine Sci. 30: 146–150. Google Scholar

  • [37] Shukor M.Y., Gusmanizar N., Ramli J., Shamaan N.A., Mac-Cornmack W.P. & Syed M.A. 2009. Isolation and characterization of an acrylamide-degrading Antarctic bacterium. J. Environ. Biol. 30: 107–112. Google Scholar

  • [38] Watanabe A., Yano K., Ikebukuro K. & Karube I. 1998. Cyanide hydrolysis in a cyanide-degrading bacterium, Pseudomonas stutzeri AK61, by cyanidase. Microbiology 144: 1677–1682. http://dx.doi.org/10.1099/00221287-144-6-1677CrossrefGoogle Scholar

About the article

Published Online: 2013-02-23

Published in Print: 2013-04-01


Citation Information: Biologia, Volume 68, Issue 2, Pages 177–185, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-013-0158-6.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pragya Gupta, T.R. Sreekrishnan, and Z.A. Shaikh
Journal of Environmental Management, 2018, Volume 226, Page 448
[2]
Rodolfo Palomo-Briones, Monserrat Ovando-Franco, Elías Razo-Flores, Lourdes Berenice Celis, José René Rangel-Méndez, Esmeralda Vences-Álvarez, Roel Cruz, Isabel Lázaro, and Roberto Briones-Gallardo
Mineral Processing and Extractive Metallurgy Review, 2016, Volume 37, Number 4, Page 274
[3]
Irena B. Ivshina, Anna N. Mukhutdinova, Helena A. Tyumina, Helena V. Vikhareva, Nataliya E. Suzina, Galina I. El’-Registan, and Andrey L. Mulyukin
Current Microbiology, 2015, Volume 70, Number 3, Page 307
[4]
Jorge Ricaño Rodríguez
Revista Latinoamericana de Biotecnología Ambiental y Algal, 2014, Volume 5, Number 1
[5]
Shabnam Mirizadeh, Soheila Yaghmaei, and Zahra Ghobadi Nejad
Journal of Environmental Health Science and Engineering, 2014, Volume 12, Number 1, Page 85

Comments (0)

Please log in or register to comment.
Log in