Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year


IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 68, Issue 3 (Jun 2013)

Issues

River morphology of mountain streams influenced by an extreme windstorm in the High Tatra Mountains (northern Slovakia)

Eva Bulánková
  • Department of Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniela Kalaninová
  • Department of Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, SK-84215, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ferdinand Šporka
Published Online: 2013-04-13 | DOI: https://doi.org/10.2478/s11756-013-0166-6

Abstract

In this study we describe how the river morphology of seven High Tatras streams has been influenced in different ways by a severe windstorm that occurred in November 2004. A control site situated in an undisturbed area is compared with six sites in windstorm damaged areas. In 2009–2010 River Habitat Survey (RHS) was used to assess the character of 500 m lengths of stream and to derive associated morphological indices (HQA, HMS sensu Raven 1998, RHS indices sensu Vaughan 2010). Large amounts of large woody debris in the channel influenced the streams despite most of it having been removed after the windstorm. Streams situated in deforested valley slopes were probably more affected by erosion; they had higher amounts of transported inorganic matter and also depositional bar features. Some changes in land-use had occurred with streams situated on the south-east side of the High Tatras having a more uniform banktop vegetation structure than the other streams. Distinct secondary succession of bank top vegetation was observed along windstorm influenced streams. The highest percentage of shrubs occurred where impacted streams remained untouched. Morphologically, the streams most affected by windstorm are those situated in deforested steep valley slopes that are affected by erosion and siltation.

Keywords: River Habitat Survey; morphology; High Tatra mountains; windstorm; RHS indices

  • [1] Brown L.E., Hannah D.M. & Milner A.M. 2007. Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpacks. Glob. Change Biol. 13(5): 958–966. DOI: 10.1111/j.1365-2486.2007.01341.x http://dx.doi.org/10.1111/j.1365-2486.2007.01341.xCrossrefWeb of ScienceGoogle Scholar

  • [2] Chapman C.A. & Chapman L.J. 2003. Deforestation in tropical Africa: impacts on aquatic ecosystems, Chapter 11, pp. 229–246. In: Crisman T.L., Chapman L.J., Chapman C.A. & Kaufman L.S. (eds), Conservation, Ecology and Management of African Fresh Waters, University Press of Florida, Gainesville, 544 pp. ISBN-13: 9780813025971 Google Scholar

  • [3] Cordova J.M., Rosi-Marshall E.J., Yamamuro A.M. & Lamberti G.A. 2007. Quantity, controls and functions of large woody debris in Midwestern USA streams. River Res. Appl. 23(1): 21–33. DOI: 10.1002/rra.963 http://dx.doi.org/10.1002/rra.963Web of ScienceCrossrefGoogle Scholar

  • [4] Cortes R.M.V., Varandas S., Hughes S.J. & Ferreira M.T. 2008. Combining habitat and biological characterization: Ecological validation of the river habitat survey. Limnetica 27(1): 39–56. Google Scholar

  • [5] Dreventon C., Benech B. & Jourdain S. 1998. Classification of windstorms over France. Int. J. Climatol. 18(12): 1325–1343. DOI: 10.1002/(SICI)1097-0088(1998100)18:12〈1325:: AID-JOC274〉3.0.CO;2-D http://dx.doi.org/10.1002/(SICI)1097-0088(1998100)18:12<1325::AID-JOC274>3.0.CO;2-DCrossrefGoogle Scholar

  • [6] Fetherston K.L., Naiman R.J. & Bilby R.E. 1995. Large woody debris, physical process, and riparian forest development in montane river networks of the Pacific Northwest. Geomorphology. 13(1–4): 133–144. DOI: 10.1016/0169-555X(95)00033-2 http://dx.doi.org/10.1016/0169-555X(95)00033-2CrossrefGoogle Scholar

  • [7] Fleischer P. & Homolová Z. (eds) 2011. Štúdie o Tatranskom národnom parku [Studies on Tatra National Park] 10 (43). Monografická štúdia o dôsledkoch vetrovej kalamity z roku 2004 na prírodné prostredie Vysokých Tatier [Ecological consequences of windstorm 2004 on the High Tatra Mts. nature — monography]. Štátne lesy TANAP-u, Tatranská Lomnica, 320 pp. ISBN: 978-80-89309-09-2 Google Scholar

  • [8] Gage M.S., Spivak A. & Paradise C.J. 2004. Effects of Landuse and Disturbance on Benthic Insects in Headwater Streams Draining SmallWatersheads North of Charlotte, NC. Southeastern Naturalist 3(2): 345–358. DOI: 10.1656/1528-7092(2004)003[0345:EOLUAD]2.0.CO;2 http://dx.doi.org/10.1656/1528-7092(2004)003[0345:EOLUAD]2.0.CO;2CrossrefGoogle Scholar

  • [9] Gerhard M. & Reich M. 2000. Restoration of streams with large wood: Effects of accumulated and built-in wood on channel morphology, habitat diversity and aquatic fauna. Int. Rev. Hydrobiol. 85(1): 123–137. DOI: 10.1002/(SICI)1522-2632(200003)85:1<123::AID-IROH123>3.0.CO;2-T http://dx.doi.org/10.1002/(SICI)1522-2632(200003)85:1<123::AID-IROH123>3.0.CO;2-TCrossrefGoogle Scholar

  • [10] Gurnell A.M., Piégay H., Swanson F.J. & Gregory S.V. 2002. Large wood and fluvial processes. Freshwater Biol. 47: 601–619. DOI: 10.1046/j.1365-2427.2002.00916.x http://dx.doi.org/10.1046/j.1365-2427.2002.00916.xCrossrefGoogle Scholar

  • [11] Hastie L.C., Cooksley S.L., Scougall F., Young M.R., Boon P.J. & Gaywood M.J., 2003. Characterisation of freshwater pearl mussel (Margaritifera margaritifera) riverine habitat using River Habitat Survey data. Aquatic Conserv.: Mar. Freshw. Ecosyst. 13(3): 213–224. DOI: 10.1002/aqc.560 http://dx.doi.org/10.1002/aqc.560CrossrefGoogle Scholar

  • [12] Hoffmann A. & Hering D. 2000. Wood-Associated Macroinvertebrate Fauna in Central European Streams. Int. Rev. Hydrobiol. 85(1): 25–48. DOI: 10.1002/(SICI)1522-2632(200003) 85:1〈25::AID-IROH25〉3.3.CO;2-I http://dx.doi.org/10.1002/(SICI)1522-2632(200003)85:1<25::AID-IROH25>3.0.CO;2-RCrossrefGoogle Scholar

  • [13] Hynes H.B.N. 1975. The stream and its valley. Verh. Internat. Verein. Limnol. 19: 1–15. Google Scholar

  • [14] Kalaninová D., Bulánková E. & Šporka F. 2013 Caddisfly assemblages of high mountain streams influenced by a major windstorm event. Biologia 68: in press. Web of ScienceGoogle Scholar

  • [15] Kopáček J., Procházková L., Stuchlík E. & Blažka P. 1995. The nitrogen-phosphorus relationship in mountain lakes: Influence of atmospheric input, watershed, and pH. Limnol. Oceanogr. 40(5): 930–937. http://dx.doi.org/10.4319/lo.1995.40.5.0930Google Scholar

  • [16] Koreň M. 2005. Vetrová kalamita 19. 11. 2004, nové pohľady a konsekvencie. Tatry 44: 6–29. Google Scholar

  • [17] Krno I., Šporka F., Štefková E., Tirjaková E., Bitušík P., Bulánková E., Lukáš J., Illéšová D., Derka T., Tomajka J. & Černý J. 2006. Ecological study of a high-mountain stream ecosystem (Hincov potok, High Tatra Mountains, Slovakia). Acta Soc. Zool. Bohem. 69: 299–316. Google Scholar

  • [18] Lamberti G.A., Gregory S.V., Ashkenas L.R., Wildman R.C. & Steinman A.G. 1989. Influence of channel geomorphology on retention of dissolved and particulate matter in a cascade mountain stream, pp. 33–40. In: Abell D.L. (ed.), Proceedings of the California Riparian Systems Conference, Gen. Tech. Rep. PSW, 110, Pacific Southwest Forest and Range Experiment Station, USDA Forest Service, Berkeley, CA. Google Scholar

  • [19] Lehotský M. & Grešková A. 2007. Odozva morfológie vysokogradientového vodného toku na veternú kalamitu — ekologický aspekt. Geomorphologia Slovaca et Bohemica. 7(2): 79–84. Google Scholar

  • [20] Niyogi K.D., Koren M., Arbuckle C.J. & Townsend C.R. 2007. Longitudinal changes in biota along four New Zealand streams: declines and improvements in stream health related to land use. N. Z. J. Mar. Freshw. Res. 41(1): 63–75. http://dx.doi.org/10.1080/00288330709509896Web of ScienceGoogle Scholar

  • [21] Raven P.J., Holmes N.T.H., Dawson F.H. & Everard M. 1998. Quality assessment using River Habitat Survey data. Aquatic Conserv.: Mar. Freshw. Ecosyst. 8(4): 477–499. DOI: 10.1002/(SICI)1099-0755(199807/08)8:4〈477::AID-AQC299〉3.0.CO;2-K http://dx.doi.org/10.1002/(SICI)1099-0755(199807/08)8:4<477::AID-AQC299>3.0.CO;2-KCrossrefGoogle Scholar

  • [22] Raven P.J., Holmes N., Dawson H., Lawniczak A., Bulánková E., Topercer J. & Lewin I. 2011. River habitat and macrophyte surveys in The High Tatra Mountains of Slovakia and Poland. Results from 2010. Environment Agency, Bristol, 34 pp. http://nora.nerc.ac.uk/15987/1/RiverHabitat_Tatra_mar2011_LR.pdf (accessed 10.06.2012) Google Scholar

  • [23] Raven P.J., Holmes N., Dawson H. & Withrington D. 2005. River Habitat Survey in Slovenia. Results from 2005. Environment Agency, Bristol, 28 pp. http://nora.nerc.ac.uk/9217/1/SlovenialoresN009217CR.pdf (accessed 10.06.2012) Google Scholar

  • [24] Raven P.J., Holmes N.T.H., Naura M. & Dawson F.H. 2000. Using river habitat survey for environmental assessment and catchment planning in the U.K. Hydrobiologia. 422–423: 359367. DOI: 10.1023/A:1017026417664 CrossrefGoogle Scholar

  • [25] Raven P.J., Holmes N.T., Vaughan I.P., Dawson F.H. & Scarlett P. 2010. Benchmarking habitat quality: Observations using River Habitat Survey on near-natural streams and rivers in northern and western Europe. Aquatic Conserv.: Mar. Freshw. Ecosyst. 20(Suppl. 1): S13–S30. DOI: 10.1002/aqc.1103 http://dx.doi.org/10.1002/aqc.1103CrossrefGoogle Scholar

  • [26] Environment Agency 2003, River Habitat Survey in Britain and Ireland: Field Survey Guidance Manual. River Habitat Survey Manual: 2003 version, Environment Agency, Bristol, 136 pp. http://www.icb.ufmg.br/labs/benthos/indexarquivos/pdfspagina/disciplinasamanthahughes/Trab%20de%20campo/RHS/rhsguidancemanual.pdf (accessed 12.06.2012) Google Scholar

  • [27] Střelcová K., Magová, D. & Fleischer P. 2011. Priebeh transpiračného prúdu vybraných vzorkovníkov smreka a smrekovca na refrenčnej ploche pokalmitného výskumu. Štúdie o Tatranskom národnom parku 10(43):169–178. Google Scholar

  • [28] Swanson F.J., Kratz T.K., Caine N. & Woodmansee R.G. 1988. Landform effects on ecological features and processes. Bioscience 38(2): 92–98. DOI: 10.2307/1310614 http://dx.doi.org/10.2307/1310614CrossrefGoogle Scholar

  • [29] Ter Braak C.J.F. & Šmilauer P. 2002. CANOCO Reference Manual and Users Guide to Canoco for Windows. Software for Canonical Community Ordination (Version 4). Centre of Biometry, Wageningen, 351 pp. Google Scholar

  • [30] Vaughan I.P. 2010. Habitat indices for rivers: derivation and applications. Aquatic Conserv.: Mar. Freshw. Ecosyst. 20(Suppl. 1): S4–S12. DOI: 10.1002/aqc.1078 http://dx.doi.org/10.1002/aqc.1078CrossrefGoogle Scholar

  • [31] Vaughan I.P., Noble D.G. & Ormerod S.J. 2007. Combining surveys of river habitats and river birds to appraise riverine hydromorphology. Freshwater Biol. 52(11): 2270–2284. DOI: 10.1111/j.1365-2427.2007.01837.x http://dx.doi.org/10.1111/j.1365-2427.2007.01837.xWeb of ScienceCrossrefGoogle Scholar

  • [32] Vološčuk I. 1994. Tatransky národny park: biosférická rezervácia. Gradus, Martin, Slovak Republic, 551 pp. ISBN: 8090139248, ISBN13: 9788090139244 Google Scholar

  • [33] Walker J., Diamond M. & Naura M. 2002. The development of physical quality objectives for rivers in England and Wales. Seminar on Sustainable River Management in the UK Location: London, England, Date: Jan 23–24, 2002. Aquatic Conserv.: Mar. Freshw. Ecosyst. 12(4): 381–390. DOI: 10.1002/aqc.538 http://dx.doi.org/10.1002/aqc.538CrossrefGoogle Scholar

  • [34] Wu T.H., McKinnell W.P. & Swanston D.N. 1979. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can. Geotech. J. 16(1): 19–33. DOI: 10.1139/t79-003 http://dx.doi.org/10.1139/t79-003CrossrefGoogle Scholar

  • [35] Ziemer R.R. 1981. Roots and the stability of forested slopes, pp. 343–361. In: Davies T.R.H. & Pearce A.J. (eds), Proceedings of the International Symposium on Erosion and Sediment Transport in Pacific Rim Steeplands, 1981, January 25–31, Christchurch, N.Z. International Association of Hydrological Sciences/IAHS Publ. No 132, 654 pp. Google Scholar

  • [36] Ziemer R.R. 1992. Effect of logging on subsurface pipeflow and erosion: coastal northern California, USA, pp. 187–197. In: Walling D.E., Davies T.R. & Hasholt B. (eds), Erosion, Debris Flows and Environment in Mountain Regions, Proceedings of the Chengdu Symposium, July 1992, IAHS Publ. no. 209, 486 pp. ISBN: 0-947571-38-8 http://tanap.region.sk/ (accessed 15.06.2012) http://www.expeeronline.eu/ (accessed 15.06.2012) Google Scholar

About the article

Published Online: 2013-04-13

Published in Print: 2013-06-01


Citation Information: Biologia, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-013-0166-6.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in