Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 68, Issue 4

Issues

Evolutionary transition from C3 to C4 photosynthesis and the route to C4 rice

Zheng Liu / Ning Sun / Shangjun Yang / Yanhong Zhao / Xiaoqin Wang / Xingyu Hao / Zhijun Qiao
  • Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan, 030031, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-13 | DOI: https://doi.org/10.2478/s11756-013-0191-5

Abstract

Compared with C3 plants, C4 plants possess a mechanism to concentrate CO2 around the ribulose-1,5-bisphosphate carboxylase/oxygenase in chloroplasts of bundle sheath cells so that the carboxylation reaction work at a much more efficient rate, thereby substantially eliminate the oxygenation reaction and the resulting photorespiration. It is observed that C4 photosynthesis is more efficient than C3 photosynthesis under conditions of low atmospheric CO2, heat, drought and salinity, suggesting that these factors are the important drivers to promote C4 evolution. Although C4 evolution took over 66 times independently, it is hypothesized that it shared the following evolutionary trajectory: 1) gene duplication followed by neofunctionalization; 2) anatomical and ultrastructral changes of leaf architecture to improve the hydraulic systems; 3) establishment of two-celled photorespiratory pump; 4) addition of transport system; 5) co-option of the duplicated genes into C4 pathway and adaptive changes of C4 enzymes. Based on our current understanding on C4 evolution, several strategies for engineering C4 rice have been proposed to increase both photosynthetic efficiency and yield significantly in order to avoid international food crisis in the future, especially in the developing countries. Here we summarize the latest progresses on the studies of C4 evolution and discuss the strategies to introduce two-celled C4 pathway into rice.

Keywords: C3 photosynthesis; C4 photosynthesis; C4 rice; hydraulic conductance; photorespiration; plant evolution

  • [1] Ache P., Bauer H., Kollist H., Al-Rasheid K.A.S., Lautner S., Hartung W. & Hedrich R. 2010. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements. Plant J. 62: 1072–1082. Google Scholar

  • [2] Ali S. & Taylor W.C. 2001. Quantitative regulation of the Flaveria Me1 gene is controlled by the 3′-untranslated region and sequences near the amino terminus. Plant Mol. Biol. 46: 251–261. http://dx.doi.org/10.1023/A:1010684509008CrossrefGoogle Scholar

  • [3] Bauwe H. 2010. Photorespiration — the bridge to C4 photosynthesis, pp. 81–108. In: Raghavendra A.S & Sage R.F. (eds), C4 Photosynthesis and Related CO2 Concentrating Mechanisms, Springer Verlag, Berlin. http://dx.doi.org/10.1007/978-90-481-9407-0_6CrossrefGoogle Scholar

  • [4] Berry J.O., Breiding D.E. & Klessig D.F. 1990. Light-mediated control of translational initiation of ribulose-1,5-bisphosphate carboxylase in amaranth cotyledons. Plant Cell. 2: 795–803. CrossrefGoogle Scholar

  • [5] Bläsing O.E., Westhoff P. & Svensson P. 2000. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics. J. Biol. Chem. 275: 27917–27923. Google Scholar

  • [6] Bräutigam A., Hoffmann-Benning S. & Weber A.P. 2008. Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. Plant Physiol. 148: 568–579. Erratum. Plant Physiol. 148: 1734. http://dx.doi.org/10.1104/pp.108.121012CrossrefGoogle Scholar

  • [7] Bräutigam A. & Weber A.P. 2011. Do metabolite transport processes limit photosynthesis? Plant Physiol. 155: 43–48. http://dx.doi.org/10.1104/pp.110.164970CrossrefGoogle Scholar

  • [8] Bräutigam A., Kajala K., Wullenweber J., Sommer M., Gagneul D., Weber K.L., Carr K.M., Gowik U., Mass J., Lercher M.J., Westhoff P., Hibberd J.M. & Weber A.P. 2011. An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol. 155: 142–156. http://dx.doi.org/10.1104/pp.110.159442CrossrefGoogle Scholar

  • [9] Brown R.H. 1999. Agronomic implications of C4 photosynthesis, pp. 473–507. In: Sage R.F. & Monson R.K. (eds), C4 plant biology, Academic Press, San Diego. http://dx.doi.org/10.1016/B978-012614440-6/50015-XCrossrefGoogle Scholar

  • [10] Brown N.J., Newell C.A., Stanley S., Chen J.E., Perrin A.J., Kajala K. & Hibberd J.M. 2011. Independent and parallel recruitment of preexisting mechanisms underlying C4 photosynthesis. Science 331: 1436–1439. http://dx.doi.org/10.1126/science.1201248CrossrefGoogle Scholar

  • [11] Cegelski L. & Schaefer J. 2006. NMR determination of photorespiration in intact leaves using in vivo 13CO2 labeling. J. Magn. Reson. 178: 1–10. http://dx.doi.org/10.1016/j.jmr.2005.10.010CrossrefGoogle Scholar

  • [12] Cerling T.E., Harris J.M., MacFadden B.J., Leakey M.G., Quade J., Eisenmann V. & Ehleringer J.R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389: 153–158. http://dx.doi.org/10.1038/38229CrossrefGoogle Scholar

  • [13] Chang Y.M., Liu W.Y., Shih A.C., Shen M.N., Lu C.H., Lu M.Y., Yang H.W., Wang T.Y., Chen S.C., Chen S.M., Li W.H. & Ku M.S. 2012. Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol. 160: 165–177. http://dx.doi.org/10.1104/pp.112.203810CrossrefGoogle Scholar

  • [14] Chastain C.J., Failing C.J., Manandhar L., Zimmerman M.A., Lakner M.M. & Nguyen T.H. 2011. Functional evolution of C4 pyruvate, orthophosphate dikinase. J. Exp. Bot. 62: 3083–3091. http://dx.doi.org/10.1093/jxb/err058CrossrefGoogle Scholar

  • [15] Cheng S.H., Moore B.D., Edwards G.E. & Ku M.S.B. 1988. Photosynthesis in Flaveria brownii, a C4-like species. Plant Physiol. 87: 867–873. http://dx.doi.org/10.1104/pp.87.4.867CrossrefGoogle Scholar

  • [16] Christin P.A., Besnard G., Samaritani E., Duvall M.R., Hodkinson T.R., Savolainen V. & Salamin N. 2008. Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr. Biol. 18: 37–43. http://dx.doi.org/10.1016/j.cub.2007.11.058CrossrefGoogle Scholar

  • [17] Christin P.A. & Besnard G. 2009. Two independent C4 origins in Aristidoideae (Poaceae) revealed by the recruitment of distinct phosphoenolpyruvate carboxylase genes. Am. J. Bot. 96: 2234–2239. http://dx.doi.org/10.3732/ajb.0900111CrossrefGoogle Scholar

  • [18] Christin P.A., Freckleton R.P. & Osborne C.P. 2010. Can phylogenetics identify C4 origins and reversals? Trends Ecol. Evol. 6: 95–99. Google Scholar

  • [19] Christin P.A., Osborne C.P., Sage R.F., Arakaki M. & Edwards E.J. 2011. C4 eudicots are not younger than C4 monocots. J. Exp. Bot. 62: 3171–3181. http://dx.doi.org/10.1093/jxb/err041CrossrefGoogle Scholar

  • [20] Cowling S.A. & Sage R.F. 1998. Interactive effects of low atmospheric CO2 and elevated temperature on growth, photosynthesis and respiration in Phaseolus vulgaris. Plant Cell Environ. 21: 427–435. http://dx.doi.org/10.1046/j.1365-3040.1998.00290.xCrossrefGoogle Scholar

  • [21] Danker T., Dreesen B., Offermann S., Horst I. & Peterhansel C. 2008. Developmental information but not promoter activity controls the methylation state of histone H3 lysine 4 on two photosynthetic genes in maize. Plant J. 53: 465–474. http://dx.doi.org/10.1111/j.1365-313X.2007.03352.xCrossrefGoogle Scholar

  • [22] Detarsio E., Alvarez C.E., Saigo M., Andreo C.S. & Drincovich M.F. 2007. Identification of domains involved in tetramerization and malate inhibition of maize C4-NADP-malic enzyme. J. Biol. Chem. 282: 6053–6060. http://dx.doi.org/10.1074/jbc.M609436200CrossrefGoogle Scholar

  • [23] Edwards E.J., Osborne C.P., Strömberg C.A., Smith S.A., C4 Grasses Consortium., Bond W.J., Christin P.A., Cousins A.B., Duvall M.R., Fox D.L., Freckleton R.P., Ghannoum O., Hartwell J., Huang Y., Janis C.M., Keeley J.E., Kellogg E.A., Knapp A.K., Leakey A.D., Nelson D.M., Saarela J.M., Sage R.F., Sala O.E., Salamin N., Still C.J. & Tipple B. 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science. 328: 587–591. http://dx.doi.org/10.1126/science.1177216CrossrefGoogle Scholar

  • [24] Edwards G.E. & Voznesenskaya E.V. 2011. C4 photosynthesis: Kranz forms and single-cell C4 in terrestrial plants, pp. 29–61. In: Raghavendra A.S. & Sage R.F. (eds), C4 Photosynthesis and Related CO2 Concentrating Mechanisms, Springer, Dordrecht. Google Scholar

  • [25] Ehleringer J.R. & Monson R.K. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Syst. 24: 411–439. http://dx.doi.org/10.1146/annurev.es.24.110193.002211CrossrefGoogle Scholar

  • [26] Ehleringer J.R., Cerling T.E. & Helliker B.R. 1997. C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112: 285–299. http://dx.doi.org/10.1007/s004420050311CrossrefGoogle Scholar

  • [27] Ehleringer J.R. 2005. The influence of atmospheric CO2, temperature, and water on the abudance of C3/C4 taxa, pp. 214–231. In: Ehleringer J.R., Cerling T.E. & Dearing M.D. (eds), A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Ecological Studies, Vol 177. Springer, New York. http://dx.doi.org/10.1007/0-387-27048-5_10Google Scholar

  • [28] Friso G., Majeran W., Huang M., Sun Q. & van Wijk K.J. 2010. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol. 152: 1219–1250. http://dx.doi.org/10.1104/pp.109.152694CrossrefGoogle Scholar

  • [29] Fukayama H., Tsuchida H., Agarie S., Nomura M., Onodera H., Ono K., Lee B.H., Hirose S., Toki S., Ku M.S.B., Makino A., Matsuoka M. & Miyao M. 2001. Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. Plant Physiol. 127: 1136–1146. http://dx.doi.org/10.1104/pp.010641CrossrefGoogle Scholar

  • [30] Fukayama H., Hatch M.D., Tamai T., Tsuchida H., Sudoh S., Furbank R.T. & Miyao M. 2003. Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth. Res. 77: 227–239. http://dx.doi.org/10.1023/A:1025861431886CrossrefGoogle Scholar

  • [31] Furumoto T., Yamaguchi T., Ohshima-Ichie Y., Nakamura M., Tsuchida-Iwata Y., Shimamura M., Ohnishi J., Hata S., Gowik U., Westhoff P., Bräutigam A., Weber A.P. & Izui K. 2011. A plastidial sodium-dependent pyruvate transporter. Nature 476: 472–475. http://dx.doi.org/10.1038/nature10250CrossrefGoogle Scholar

  • [32] Gowik U., Burscheidt J., Akyildiz M., Schlue U., Koczor M., Streubel M. & Westhoff P. 2004. cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell 16: 1077–1090. http://dx.doi.org/10.1105/tpc.019729CrossrefGoogle Scholar

  • [33] Gowik U. & Westhoff P. 2011. The path from C3 to C4 photosynthesis. Plant Physiol. 155: 56–63. http://dx.doi.org/10.1104/pp.110.165308CrossrefGoogle Scholar

  • [34] Gowik U., Brautigam A., Weber K.L., Weber A.P. & Westhoff P. 2011. Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? Plant Cell 23: 2087–2105. http://dx.doi.org/10.1105/tpc.111.086264CrossrefGoogle Scholar

  • [35] Griffiths H., Weller G., Toy L.F. & Dennis R.J. 2013. You’re so vein: bundle sheath physiology, phylogeny and evolution in C3 and C4 plants. Plant Cell Environ. 36: 249–261. http://dx.doi.org/10.1111/j.1365-3040.2012.02585.xCrossrefGoogle Scholar

  • [36] Hibberd J.M. & Covshoff S. 2010. The regulation of gene expression required for C4 photosynthesis. Annu. Rev. Plant Biol. 61: 181–207. http://dx.doi.org/10.1146/annurev-arplant-042809-112238CrossrefGoogle Scholar

  • [37] Horst I., Offermann S., Dreesen B., Niessen M. & Peterhansel C. 2009. Core promoter acetylation is not required for high transcription from the phosphoenolpyruvate carboxylase promoter in maize. Epigenet Chromatin 2: 17. http://dx.doi.org/10.1186/1756-8935-2-17CrossrefGoogle Scholar

  • [38] Jacobs B., Engelmann S., Westhoff P., Gowik U. 2008. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria: determinants for high tolerance towards the inhibitor L-malate. Plant Cell Environ. 31: 793–803. http://dx.doi.org/10.1111/j.1365-3040.2008.01796.xCrossrefGoogle Scholar

  • [39] Kajala K., Covshoff S., Karki S., Woodfield H., Tolley B.J., Dionora M.J.A., Mogul R.T., Mabilangan A.E., Danila F.R., Hibberd J.M. & Quick W.P. 2011. Strategies for engineering a two-celled C4 photosynthetic pathway into rice. J. Exp. Bot. 62: 3001–3010. http://dx.doi.org/10.1093/jxb/err022CrossrefGoogle Scholar

  • [40] Kajala K., Brown N.J., Williams B.P., Borrill P., Taylor L.E. & Hibberd J.M. 2012. Multiple Arabidopsis genes primed for recruitment into C4 photosynthesis. Plant J. 69: 47–56. http://dx.doi.org/10.1111/j.1365-313X.2011.04769.xCrossrefGoogle Scholar

  • [41] Kapralov M.V., Kubien D.S., Andersson I. & Filatov D.A. 2011. Changes in Rubisco kinetics during the evolution of C4 photosynthesis in Flaveria (Asteraceae) are associated with positive selection on genes encoding the enzyme. Mol. Biol. Evol. 28: 1491–503. http://dx.doi.org/10.1093/molbev/msq335CrossrefGoogle Scholar

  • [42] Kausch A.P., Owen T.P., Zachwieja S.J., Flynn A.R. & Sheen J. 2001. Mesophyll-specific, light and metabolic regulation of the C4PPCZm1 promoter in transgenic maize. Plant Mol. Biol. 45: 1–15. http://dx.doi.org/10.1023/A:1006487326533CrossrefGoogle Scholar

  • [43] Ku M.S.B., Monson R.K., Littlejohn R.O., Nakamoto H., Fisher D.B. & Edwards G.E. 1983. Photosynthetic characteristics of C3-C4 intermediate Flaveria species: I. Leaf anatomy, photosynthetic responses to O2 and CO2, and activities of key enzymes in the C3 and C4 pathways. Plant Physiol. 71: 944–948. http://dx.doi.org/10.1104/pp.71.4.944Google Scholar

  • [44] Ku M.S.B., Wu J.R., Dai Z.Y., Scott R.A., Chu C. & Edwards G.E. 1991. Photosynthetic and photorespiratory characteristics of Flaveria species. Plant Physiol. 96: 518–528. http://dx.doi.org/10.1104/pp.96.2.518CrossrefGoogle Scholar

  • [45] Ku M.S.B., Agarie S., Nomura M., Fukayama H., Tsuchida H., Ono K., Hirose S., Toki S., Miyao M. & Matsuoka M. 1999. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat. Biotechnol. 17: 76–80. http://dx.doi.org/10.1038/5256CrossrefGoogle Scholar

  • [46] Lai L.B., Wang L. & Nelson T.M. 2002. Distinct but conserved functions for two chloroplasticNADP-malic enzyme isoforms in C3 and C4Flaveria species. Plant Physiol. 128: 125–39. http://dx.doi.org/10.1104/pp.010448CrossrefGoogle Scholar

  • [47] Langdale J.A. & Nelson T. 1991. Spatial regulation of photosynthetic development in C4 plants. Trends Genet. 7: 191–196. CrossrefGoogle Scholar

  • [48] Langdale J.A., Taylor W.C. & Nelson T. 1991. Cell-specific accumulation of maize phosphoenolpyruvate carboxylase is correlated with demethylation at a specific site greater than 3 kb upstream of the gene. Mol. Gen. Genet. 225: 49–55. http://dx.doi.org/10.1007/BF00282641CrossrefGoogle Scholar

  • [49] Langdale J.A. 2011. C4 cycle: past, present, and future research on C4 photosynthesis. Plant Cell 23: 3879–3892. http://dx.doi.org/10.1105/tpc.111.092098CrossrefGoogle Scholar

  • [50] Li J., Gong X., Lin H., Song Q., Chen J. & Wang X. 2005. DGP1, a drought-induced guard cell-specific promoter and its function analysis in tobacco plants. Sci. China C. Life Sci. 48: 181–186. CrossrefGoogle Scholar

  • [51] Li P., Ponnala L., Gandotra N., Wang L., Si Y., Tausta S.L., Kebrom T.H., Provart N., Patel R., Myers C.R., Reidel E.J., Turgeon R., Liu P., Sun Q., Nelson T. & Brutnell T.P. 2010. The developmental dynamics of the maize leaf transcriptome. Nat Genet. 42: 1060–1067. http://dx.doi.org/10.1038/ng.703CrossrefGoogle Scholar

  • [52] Liu Z. & Sun N. 2013. Enhancing photosynthetic CO2 use efficiency in rice: approaches and challenges. Acta Physiol Plant. 35: 1001–1009. http://dx.doi.org/10.1007/s11738-012-1171-zCrossrefGoogle Scholar

  • [53] Ludwig M. 2012. Carbonic anhydrase and the molecular evolution of C4 photosynthesis. Plant Cell Environ. 35: 22–37. http://dx.doi.org/10.1111/j.1365-3040.2011.02364.xCrossrefGoogle Scholar

  • [54] Majeran W., Cai Y., Sun Q. & van Wijk K.J. 2005. Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17: 3111–3140. http://dx.doi.org/10.1105/tpc.105.035519CrossrefGoogle Scholar

  • [55] Majeran W., Zybailov B., Ytterberg A.J., Dunsmore J., Sun Q. & van Wijk K.J. 2008. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol. Cell Proteomics 7: 1609–1638. http://dx.doi.org/10.1074/mcp.M800016-MCP200CrossrefGoogle Scholar

  • [56] Majeran W., Friso G., Ponnala L., Connolly B., Huang M., Reidel E., Zhang C., Asakura Y., Bhuiyan N.H., Sun Q., Turgeon R. & van Wijk K.J. 2010. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. Plant Cell 22: 3509–3542. http://dx.doi.org/10.1105/tpc.110.079764CrossrefGoogle Scholar

  • [57] Marshall J.S., Stubbs J.D., Chitty J.A., Surin B. & Taylor W.C. 1997. Expression of the C4 Me1 gene from Flaveria bidentis requires an interaction between 5′ and 3′ sequences. Plant Cell 9: 1515–1525. Google Scholar

  • [58] Marshall D.M., Muhaidat R., Brown N.J., Liu Z., Stanley S., Griffiths H., Sage R.F. & Hibberd J.M. 2007. Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C3 to C4 photosynthesis. Plant J. 51: 886–96. http://dx.doi.org/10.1111/j.1365-313X.2007.03188.xCrossrefGoogle Scholar

  • [59] Masumoto C., Miyazawa S.I., Ohkawa H., Fukuda T., Taniguchi Y., Murayama S., Kusano M., Saito K., Fukayama H. & Miyao M. 2010. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc. Natl. Acad. Sci. USA 107: 5226–5231. http://dx.doi.org/10.1073/pnas.0913127107CrossrefGoogle Scholar

  • [60] McKown A.D. & Dengler N.G. 2007. Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaveria (Asteraceae). Am. J. Bot. 94: 382–399. http://dx.doi.org/10.3732/ajb.94.3.382CrossrefGoogle Scholar

  • [61] Miyao M. 2003. Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J. Exp. Bot. 54: 179–189. http://dx.doi.org/10.1093/jxb/erg026CrossrefGoogle Scholar

  • [62] Miyao M., Masumoto C., Miyazawa S. & Fukayama H. 2011. Lessons from engineering a single-cell C4 photosynthetic pathway into rice. J. Exp. Bot. 62: 3021–3029. http://dx.doi.org/10.1093/jxb/err023CrossrefGoogle Scholar

  • [63] Monson R.K. & Moore B.D. 1989. On the significance of C3-C4 intermediate photosynthesis to the evolution of C4 photosynthesis. Plant Cell Environ. 12: 689–699. http://dx.doi.org/10.1111/j.1365-3040.1989.tb01629.xCrossrefGoogle Scholar

  • [64] Monson R.K. 1999. The origins of C4 genes and evolutionary pattern in the C4 metabolic phenotype, pp. 377–410. In: Sage R.F. & Monson R.K. (eds), C4 plant biology, Academic Press, San Diego. http://dx.doi.org/10.1016/B978-012614440-6/50012-4CrossrefGoogle Scholar

  • [65] Monson R.K. 2003. Gene duplication, neofunctionalization, and the evolution of C4 photosynthesis. Int. J. Plant Sci. 164: S43–S54. http://dx.doi.org/10.1086/368400CrossrefGoogle Scholar

  • [66] Moore B.D., Monson R.K., Ku M.S.B. & Edwards G.E. 1988. Activities of principal photosynthetic and photorespiratory enzymes in leaf mesophyll and bundle sheath protoplasts from the C3-C4 intermediate Flaveria ramosissima. Plant Cell Physiol. 29: 999–1006. Google Scholar

  • [67] Morgan C.L., Turner S.R. & Rawsthorne S. 1993. Coordination of the cell-specific distribution of the four subunits of glycine decarboxylase and of serine hydroxymethyltransferase in leaves of C3-C4 intermediate species from different genera. Planta 190: 468–473. http://dx.doi.org/10.1007/BF00224785CrossrefGoogle Scholar

  • [68] Muhaidat R., Sage R.F. & Dengler N.G. 2007. Diversity of Kranz anatomy and biochemistry in C4 eudicots. Am. J. Bot. 94: 362–381. http://dx.doi.org/10.3732/ajb.94.3.362CrossrefGoogle Scholar

  • [69] Muhaidat R., Sage T.L., Frohlich M.W., Dangler N.G. & Sage R.F. 2011. Characterization of C3-C4 intermediate species in the genus Heliotropium L. (Boraginaceae): anatomy, ultrastructure and enzyme activity. Plant Cell Environ. 34: 1723–1736. http://dx.doi.org/10.1111/j.1365-3040.2011.02367.xCrossrefGoogle Scholar

  • [70] Osborne C.P. & Sack L. 2012. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Phil. Trans. R. Soc. B. 367: 583–600. http://dx.doi.org/10.1098/rstb.2011.0261CrossrefGoogle Scholar

  • [71] Patel M., Siegel A.J. & Berry J.O. 2006. Untranslated regions of FbRbcS1 mRNA mediate bundle sheath cell-specific gene expression in leaves of a C4 plant. J Biol Chem. 281: 25485–25491. http://dx.doi.org/10.1074/jbc.M604162200CrossrefGoogle Scholar

  • [72] Peterhansel C., Horst I., Niessen M., Blume C., Kebeish R., Kurkcuoglu S. & Kreuzaler F. 2010. Photorespiration, e0130[2010-3-23]. In: The Arabidopsis book. American Society of Plant Biologists, Rockville. http://www.bioone.org/doi/pdf/10.1199/tab.0130 CrossrefGoogle Scholar

  • [73] Peterhansel C. 2011. Best practice procedures for the establishment of a C4 cycle in transgenic C3 plants. J Exp. Bot. 62: 3011–3019. http://dx.doi.org/10.1093/jxb/err027CrossrefGoogle Scholar

  • [74] Rawsthorne S., Hylton C.M., Smith A.M. & Woolhouse H.W. 1988. Distribution of photorespiratory enzymes between bundle-sheath and meso phyll cells in leaves of the C3-C4 intermediate species Moricandia arvensis (L.) DC. Planta 176: 527–532. http://dx.doi.org/10.1007/BF00397660CrossrefGoogle Scholar

  • [75] Reed J.E. & Chollet R. 1985. Immunofiuorescent localization of phosphoenolpyruvate carboxylase and ribulose 1,5-bisphosphate carboxylase/oxygenase proteins in leaves of C3, C4, and C3-C4 intermediate Flaveria species. Planta 165: 439–445. http://dx.doi.org/10.1007/BF00398088CrossrefGoogle Scholar

  • [76] Rondeau P., Rouch C. & Besnard G. 2005. NADP-malate dehydrogenase gene evolution in Andropogoneae (Poaceae): gene duplication followed by sub-functionalization. Ann. Bot. 96: 1307–1314. http://dx.doi.org/10.1093/aob/mci282CrossrefGoogle Scholar

  • [77] Rosche E. & Westhoff P. 1995. Genomic structure and expression of the pyruvate, orthophosphate dikinase gene of the dicotyledonous C4 plant Flaveria trinervia (Asteraceae). Plant Mol. Biol. 29: 663–678. http://dx.doi.org/10.1007/BF00041157CrossrefGoogle Scholar

  • [78] Roth-Nebelsick A., Uhl D., Mosbrugger V. & Hans K. 2001. Evolution and function of leaf venation architecture: A review. Ann. Bot. 87: 553–566. http://dx.doi.org/10.1006/anbo.2001.1391CrossrefGoogle Scholar

  • [79] Rundel P.W. 1980. The ecological distribution of C4 and C3 grasses in the Hawaiian Islands. Oecologia 45: 354–359. http://dx.doi.org/10.1007/BF00540205CrossrefGoogle Scholar

  • [80] Sage R.F. 2004. The evolution of C4 photosynthesis. New Phytol. 161: 341–370. http://dx.doi.org/10.1111/j.1469-8137.2004.00974.xCrossrefGoogle Scholar

  • [81] Sage R.F. & Sage T.L. 2008. Learning from nature to develop strategies for the directed evolution of C4 rice, pp. 195–216. In: Sheehy J.E., Mitchell P.L. & Hardy B., (eds), Charting New Pathways to C4 Rice, World Scientific Publishing Co. Pte. Ltd, Singapore. http://dx.doi.org/10.1142/9789812709523_0012CrossrefGoogle Scholar

  • [82] Sage R.F., Christin P.A. & Edwards E.J. 2011a. The C4 plant lineages of planet Earth. J. Exp. Bot. 62: 3155–3169. http://dx.doi.org/10.1093/jxb/err048CrossrefGoogle Scholar

  • [83] Sage T.L., Sage R.F., Vogan P.J., Rahman B., Johnson D.C., Oakley J.C. & Heckel M.A. 2011b. The occurrence of C2 photosynthesis in Euphorbia subgenus Chamaesyce (Euphorbiaceae). J. Exp. Bot. 62: 3183–3195. http://dx.doi.org/10.1093/jxb/err059CrossrefGoogle Scholar

  • [84] Sage R.F., Sage T.L. & Kocacinar F. 2012. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 63: 19–47. http://dx.doi.org/10.1146/annurev-arplant-042811-105511CrossrefGoogle Scholar

  • [85] Shatil-Cohen A., Attia Z. & Moshelion M. 2011. Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? Plant J. 67: 72–80. http://dx.doi.org/10.1111/j.1365-313X.2011.04576.xCrossrefGoogle Scholar

  • [86] Sheehy J.E. & Mitchell P.L. 2011. Rice and global food security: the race between scientific discovery and catastrophe, pp. 81–90. In: Pasternak C. (ed.), Access not Excess. The Search for Better Nutrition. Smith-Gordon, Cambridgeshire. Google Scholar

  • [87] Sheen J. 1990. Metabolic repression of transcription in higher plants. Plant Cell 2: 1027–1038. CrossrefGoogle Scholar

  • [88] Suzuki S., Murai N., Kasaoka K., Hiyoshi T., Imaseki H., Burnell J.N. & Arai M. 2006. Carbon metabolism in transgenic rice plants that express phosphoenolpyruvate carboxylase and/or phosphoenolpyruvate carboxykinase. Plant Sci. 170: 1010–1019. http://dx.doi.org/10.1016/j.plantsci.2006.01.009CrossrefGoogle Scholar

  • [89] Taniguchi Y., Nagasaki J., Kawasaki M., Miyake H., Sugiyama T. & Taniguchi M. 2004. Differentiation of dicarboxylate transporters in mesophyll and bundle sheath chloroplasts of maize. Plant Cell Physiol. 45: 187–200. http://dx.doi.org/10.1093/pcp/pch022CrossrefGoogle Scholar

  • [90] Teeri J.A. & Stowe L.G. 1976. Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23: 1–12. CrossrefGoogle Scholar

  • [91] Tieszen L.L., Reed B.B., Bliss B.B., Wylie B.K. & DeJong D.D. 1997. NDVI, C3 and C4 production, and distributions in Great Plains grassland land cover classes. Ecol. Appl. 7: 59–78. Google Scholar

  • [92] Tipple B.J. & Pagani M. 2007. The early origins of terrestrial C4 photosynthesis. Annu. Rev. Earth Planet Sci. 35: 435–61. http://dx.doi.org/10.1146/annurev.earth.35.031306.140150CrossrefGoogle Scholar

  • [93] Voznesenskaya E.V., Koteyeva N.K., Chuong S.D.X., Ivanova A.N., Barroca J., Craven L.A. & Edwards G.E. 2007. Physiological, anatomical and biochemical characterisation of photosynthetic types in genus Cleome (Cleomaceae). Funct. Plant Biol. 34: 247–267. http://dx.doi.org/10.1071/FP06287CrossrefGoogle Scholar

  • [94] Wan C.S.M. & Sage R.F. 2001. Climate and the distribution of C4 grasses along the Atlantic and Pacific coasts of North America. Can. J. Bot. 79: 474–86. CrossrefGoogle Scholar

  • [95] Wang X., Gowik U., Tang H., Bowers J.E., Westhoff P. & Paterson A.H. 2009. Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol. 10: R68. http://dx.doi.org/10.1186/gb-2009-10-6-r68CrossrefGoogle Scholar

  • [96] Weber A.P. & von Caemmerer S. 2010. Plastid transport and metabolism of C3 and C4 plants — comparative analysis and possible biotechnological exploitation. Curr. Opin. Plant Biol. 13: 257–265. http://dx.doi.org/10.1016/j.pbi.2010.01.007CrossrefGoogle Scholar

  • [97] Williams B.P., Aubry S. & Hibberd J.M. 2012. Molecular evolution of genes recruited into C4 photosynthesis. Trends Plant Sci. 17: 213–220. http://dx.doi.org/10.1016/j.tplants.2012.01.008CrossrefGoogle Scholar

About the article

Published Online: 2013-06-13

Published in Print: 2013-08-01


Citation Information: Biologia, Volume 68, Issue 4, Pages 577–586, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-013-0191-5.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in