Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 68, Issue 5

Issues

Antioxidative, anticancer and genotoxic properties of α-pinene on N2a neuroblastoma cells

Elanur Aydin / Hasan Türkez / Fatime Geyikoğlu
Published Online: 2013-08-31 | DOI: https://doi.org/10.2478/s11756-013-0230-2

Abstract

α-Pinene, an organic monoterpene, is found in essential oils of pine and coniferous trees. To date, although various biological activities of α-pinene have been demonstrated, its neurotoxicity has never been explored. Therefore in this study, we aimed to describe in vitro antiproliferative and/or cytotoxic properties by 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, genotoxic damage potentials by single cell gel electrophoresis, and oxidative effects by total antioxidant capacity (TAC) and total oxidative stress (TOS) analysis of α-pinene. Statistical analysis of MTT assay results indicated significant (p < 0.05) decreases of the cell proliferation rates in healthy neurons treated with α-pinene at only 400 mg/L, while significant decreases were observed in N2a cells at 100, 200 and 400 mg/L. On the other hand, the mean values of the total scores of cells showing DNA damage were not found significantly different from the control values on both cells. In addition, our results indicated that 10 and 25 mg/L of α-pinene treatment caused increases of TAC levels in primary rat neurons without any alterations of its level in N2a cells. However, α-pinene treatments at higher doses led to increases of TOS levels in both cell types. Overall our results suggest that α-pinene is of a limited therapeutic use as an anticancer agent.

Keywords: alpha-pinene; comet assay; MTT assay; neurotoxicity; N2a neuroblastoma cell line; oxidative status

  • [1] Agullo G., Gamet-Payrastre L., Manenti S., Viala C., Remesy C., Chap H. & Payrastre B. 1997. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem. Pharmacol. 53: 1649–1657. http://dx.doi.org/10.1016/S0006-2952(97)82453-7CrossrefGoogle Scholar

  • [2] Bae G.S., Park K.C., Choi S.B., Jo I.J., Choi M.O., Hong S.H., Song K., Song H.J. & Park S.J. 2012. Protective effects of α-pinene in mice with cerulein-induced acute pancreatitis. Life Sci. 91: 866–871. http://dx.doi.org/10.1016/j.lfs.2012.08.035CrossrefGoogle Scholar

  • [3] Bayrak O., Seckiner I., Erturhan S., Aydin A. & Yagci F. 2012. Adult intrarenal neuroblastoma presenting as renal cell carcinoma. Can. Urol. Assoc. J. 6: E144–E146. http://dx.doi.org/10.5489/cuaj.12062CrossrefGoogle Scholar

  • [4] Bourgou S., Pichette A., Lavoie S., Marzouk B. & Legault J. 2012. Terpenoids isolated from Tunisian Nigella sativa L. essential oil with antioxidant activity and the ability to inhibit nitric oxide production. Flavour Fragr. J. 27: 69–74. http://dx.doi.org/10.1002/ffj.2085CrossrefGoogle Scholar

  • [5] Brodeur G.M. 2003. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer 3: 203–216. http://dx.doi.org/10.1038/nrc1014CrossrefGoogle Scholar

  • [6] Brusselmans K., Vrolix R., Verhoeven G. & Swinnen J.V. 2005. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem. 280: 5636–5645. http://dx.doi.org/10.1074/jbc.M408177200CrossrefGoogle Scholar

  • [7] Cadet J.L. & Brannock C. 1998. Free radicals and the pathobiology of brain dopamine systems. Neurochem. Int. 32: 117–131. http://dx.doi.org/10.1016/S0197-0186(97)00031-4CrossrefGoogle Scholar

  • [8] Cai Y., Luo Q., Sun M. & Corke H. 2004. Antioxidant activity and phenolic compounds of 112 traditional chinese medicinal plants associated with anticancer. Life Sci. 74: 2157–2184. http://dx.doi.org/10.1016/j.lfs.2003.09.047CrossrefGoogle Scholar

  • [9] Charles D.J. & Simon J.E. 1990. Comparison of extraction methods for the rapid determination of essential oil content and composition of basil. J. Amer. Soc. Hort. Sci. 115: 458–462. Google Scholar

  • [10] Chen D., Daniel K.G., Chen M.S., Kuhn D.J., Landis-Piwowar K.R. & Dou Q.P. 2005. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol. 69: 1421–1432. http://dx.doi.org/10.1016/j.bcp.2005.02.022CrossrefGoogle Scholar

  • [11] Chen Z.P., Schell J.B., Ho C.T. & Chen K.Y. 1998. Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett. 129: 173–179. http://dx.doi.org/10.1016/S0304-3835(98)00108-6CrossrefGoogle Scholar

  • [12] Clarke M.F. 2004. At the root of brain cancer. Nature 432: 281–282. http://dx.doi.org/10.1038/432281aCrossrefGoogle Scholar

  • [13] Constantinou A., Mehta R., Runyan C., Rao K., Vaughan A. & Moon R. 1995. Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships. J. Nat. Prod. 58: 217–225. http://dx.doi.org/10.1021/np50116a009CrossrefGoogle Scholar

  • [14] Daikhin Y. & Yudkoff M. 2000. Compartmentation of brain glutamate metabolism in neurons and glia. J. Nutr. 130: 1026–1031. Google Scholar

  • [15] Das G.P., Shaik A.P. & Jamil K. 2006. Cytotoxicity and genotoxicity induced by the pesticide profenofos on cultured human peripheral blood lymphocytes. Drug Chem. Toxicol. 29: 313–322. http://dx.doi.org/10.1080/01480540600653093CrossrefGoogle Scholar

  • [16] Dorman H.J.D., Figueiredo A.C., Barroso J.G. & Deans S.G. 2000. In vitro evaluation of antioxidant activity of essential oils and their components. Flavour. Fragr. J. 15: 12–16. http://dx.doi.org/10.1002/(SICI)1099-1026(200001/02)15:1<12::AID-FFJ858>3.0.CO;2-VCrossrefGoogle Scholar

  • [17] Erel O. 2004. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem. 37: 112–119. http://dx.doi.org/10.1016/j.clinbiochem.2003.10.014CrossrefGoogle Scholar

  • [18] Erel O. 2005. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 38: 1103–1111. http://dx.doi.org/10.1016/j.clinbiochem.2005.08.008CrossrefGoogle Scholar

  • [19] Gminski R., Tang T. & Mersch-Sundermann V. 2010. Cytotoxicity and genotoxicity in human lung epithelial A549 cells caused by airborne volatile organic compounds emitted from pine wood and oriented strand boards. Toxicol. Lett. 196: 33–41. http://dx.doi.org/10.1016/j.toxlet.2010.03.015CrossrefGoogle Scholar

  • [20] Gomes-Carneiro M.R., Viana M.E., Felzenszwalb I. & Paumgartten F.J. 2005. Evaluation of β-myrcene, α-terpinene and (+)- and (−)-α-pinene in the Salmonella/microsome assay. Food Chem. Toxicol. 43: 247–252. http://dx.doi.org/10.1016/j.fct.2004.09.011CrossrefGoogle Scholar

  • [21] Halliwell B. 2006. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97: 1634–1658. http://dx.doi.org/10.1111/j.1471-4159.2006.03907.xCrossrefGoogle Scholar

  • [22] Heaton P.R., Ransley R. & Charlton C.J. 2002. Application of single-cell gel electrophoresis (comet) assay for assessing levels of DNA damage in canine and feline leukocytes. J. Nutr. 132: 1598S–1603S. Google Scholar

  • [23] Heck J.E., Ritz B., Hung R.J., Hashibe M. & Boffetta P. 2009. The epidemiology of neuroblastoma: a review. Paediatr. Perinat. Epidemiol. 23: 125–143. http://dx.doi.org/10.1111/j.1365-3016.2008.00983.xCrossrefGoogle Scholar

  • [24] Him A., Ozbek H., Turel I. & Oner A.C. 2008. Antinociceptive activity of α-pinene and fenchone. Pharmacol. Online 3: 363–369. Google Scholar

  • [25] Ho C.L. & Su Y.C. 2012. Composition, antioxidant and antimicrobial activities of the leaf essential oil of Machilus japonica from Taiwan. Nat. Prod. Commun. 7: 109–112. Google Scholar

  • [26] Kazi A., Wang Z., Kumar N., Falsetti S.C., Chan T.H. & Dou Q.P. 2004. Structure activity relationships of synthetic analogs of (−)-epigallocatechin-3-gallate as proteasome inhibitors. Anticancer Res. 24: 943–954. Google Scholar

  • [27] Kizilian N., Wilkins R.C. & Reinhardt P. 1999. Silver stained comet assay for detection of apoptosis. Biotechniques 27: 926–930. PubMedGoogle Scholar

  • [28] Kusano C. & Ferrari B. 2008. Total antioxidant capacity: a biomarker in biomedical and nutritional studies. J. Cell Mol. Biol. 7: 1–15. Google Scholar

  • [29] Lepley D.M., Li B., Birt D.F. & Pelling J.C. 1996. The chemopreventive flavonoid apigenin induces G2/M arrest in keratinocytes. Carcinogenesis 17: 2367–2375. http://dx.doi.org/10.1093/carcin/17.11.2367CrossrefGoogle Scholar

  • [30] Lima C.F., Carvalho F., Fernandes E., Bastos M.L., Santos-Gomes P.C., Fernandes-Ferreira M. & Pereira-Wilson C. 2004. Evaluation of toxic/protective effects of the essential oil of Salvia officinalis on freshly isolated rat hepatocytes. Toxicol. In Vitro 18: 457–465. http://dx.doi.org/10.1016/j.tiv.2004.01.001CrossrefGoogle Scholar

  • [31] Linares D., Fontanille P. & Larroche C. 2009. Exploration of α-pinene degradation pathway of Pseudomonas rhodesiae CIP 107491. Application to novalic acid production in a bioreactor. Food Res. Int. 42: 461–469. http://dx.doi.org/10.1016/j.foodres.2008.12.001CrossrefGoogle Scholar

  • [32] Loza-Tavera H. 1999. Monoterpenes in essential oils. Biosynthesis and properties. Adv. Exp. Med. Biol. 464: 49–62. http://dx.doi.org/10.1007/978-1-4615-4729-7_5CrossrefGoogle Scholar

  • [33] Maidment S.L. & Pilkington GJ. 2001. Brain cancers. Encyclopaedia of Life Sciences Nature Publishing Group/Macmillan (Invited Reference Work for Electronic Publication). Google Scholar

  • [34] Maris J.M. & Matthay K.K. 1999. Molecular biology of neuroblastoma. J. Clin. Oncol. 17: 2264–2279. Google Scholar

  • [35] Matsuo A.L., Figueiredo C.R., Arruda D.C., Pereira F.V., Scutti J.A.B., Massaoka M.H., Travassos L.R., Sartorelli P. & Lago J.H.G. 2011. α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem. Biophys. Res. Commun. 411: 449–454. http://dx.doi.org/10.1016/j.bbrc.2011.06.176CrossrefGoogle Scholar

  • [36] Mecocci P., Mac Garvey U. & Beal M.F. 1994. Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann. Neurol. 36: 747–751. http://dx.doi.org/10.1002/ana.410360510CrossrefGoogle Scholar

  • [37] Montes M., Veiga M.C. & Kennes C. 2010. Two-liquid-phase mesophilic and thermophilic biotrickling filters for the biodegradation of α-pinene. Bioresour. Technol. 101: 9493–9499. http://dx.doi.org/10.1016/j.biortech.2010.07.101CrossrefGoogle Scholar

  • [38] Mueller W.P., Coppenrath E. & Pfluger T. 2013. Nuclear medicine and multimodality imaging of pediatric neuroblastoma. Pediatr. Radiol. 43: 418–427. http://dx.doi.org/10.1007/s00247-012-2512-1CrossrefGoogle Scholar

  • [39] Nijholt W.W. & McMullen L.H. 1980. Pine oil prevents mountain pine beetle attack on living lodgepole pine trees. Bimonthly Research Notes 36: 1–2. Google Scholar

  • [40] Okumura N., Yoshida H., Nishimura Y., Kitagishi Y. & Matsuda S. 2012. Terpinolene, a component of herbal sage, downregulates AKT1 expressionin K562 cells. Oncol. Lett. 3: 321–324. Google Scholar

  • [41] Ozkan A., Erdogan A., Sokmen M., Tugrulay S. & Unal O. 2010. Antitumoral and antioxidant effect of essential oils and in vitro antioxidant properties of essential oils and aqueous extracts from Salvia pisidica. Biologia 65: 990–996. http://dx.doi.org/10.2478/s11756-010-0108-5CrossrefGoogle Scholar

  • [42] Özen T. & Kinalioğlu K. 2008. Determination of antioxidant activity of various extracts of Parmelia saxatilis. Biologia 63: 211–216. http://dx.doi.org/10.2478/s11756-008-0047-6CrossrefGoogle Scholar

  • [43] Plaumann B., Fritsche M., Rimpler H., Brandner G. & Hess RD. 1996. Flavonoids activate wild-type P53. Oncogene 13: 1605–1614. Google Scholar

  • [44] Rene E.R., Lopez M.E., Veiga M.C. & Kennes C. 2010. Steadyand transient-state operation of a two-stage bioreactor for the treatment of a gaseous mixture of hydrogen sulphide, methanol and α-pinene. J. Chem. Technol. Biotechnol. 85: 336–348. http://dx.doi.org/10.1002/jctb.2343CrossrefGoogle Scholar

  • [45] Rupar-Gadd K., Bagherpour M.B., Holmstedt G., Welander U. & Sanati M. 2006. Solid phase micro extraction fibers, calibration for use in biofilter applications. Biochem. Eng. J. 31: 107–112. http://dx.doi.org/10.1016/j.bej.2006.05.007CrossrefGoogle Scholar

  • [46] Saleha Banu B., Dana Devi K. & Mahboob M. 2000. In vivo genotoxic effect of zinc sulfate in mouse peripheral blood leukocytes using comet assay. Drug Chem. Toxicol. 24: 63–73. http://dx.doi.org/10.1081/DCT-100103086CrossrefGoogle Scholar

  • [47] Saverini M., Catanzaro I., Sciandrello G., Avellone G., Indelicato S., Marci G. & Palmisano L. 2012. Genotoxicity of Citrus wastewater in prokaryotic and eukaryotic cells and efficiency of heterogeneous photocatalysis by TiO2. J. Photochem. Photobiol. B 108: 8–15. http://dx.doi.org/10.1016/j.jphotobiol.2011.12.003CrossrefGoogle Scholar

  • [48] Shon M.Y., Choi S.D., Kahng G.G., Nam S.H. & Sung N.J. 2004. Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow and red onions. Food Chem. Toxicol. 42: 659–666. http://dx.doi.org/10.1016/j.fct.2003.12.002CrossrefGoogle Scholar

  • [49] Simonsen J.L. 1957. The terpenes (2nd Edition), Cambridge University Press, Cambridge, 105-191 pp. Google Scholar

  • [50] Singh D.K. & Lippman S.M. 1998. Cancer chemoprevention part 1: retinoids and carotenoids and other classic antioxidants. Oncology 12: 1643–1660. Google Scholar

  • [51] Singh H.P., Mittal S., Kaur S., Batish D.R. & Kohli R.K. 2009. Characterization and antioxidant activity of essential oils from fresh and decaying leaves of Eucalyptus tereticornis. J. Agric. Food Chem. 57: 6962–6966. http://dx.doi.org/10.1021/jf9012407CrossrefGoogle Scholar

  • [52] Singh N.P., McCoy M.T. & Tice R.R. 1998. A simple technique for quantitation of low level of DNA damage in individual cells. Exp. Cell Res. 17: 184–191. Google Scholar

  • [53] Tice R.R., Agurell E. & Anderson D. 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35: 206–221. http://dx.doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-JCrossrefGoogle Scholar

  • [54] Turkez H. 2011. The role of ascorbic acid on titanium dioxideinduced genetic damage assessed by the comet assay and cytogenetic tests. Exp. Toxicol. Pathol. 63: 453–457. http://dx.doi.org/10.1016/j.etp.2010.03.004CrossrefGoogle Scholar

  • [55] Turkez H. & Aydin E. 2012. Anti-genotoxic role of eicosapentaenoic acid against imazalil-induced DNA damage in vitro. Toxicol. Ind. Health (in press); DOI:10.1177/0748233711433943. CrossrefGoogle Scholar

  • [56] Turkez H. & Geyikoglu F. 2010. Boric acid: a potential chemoprotective agent against aflatoxin B(1) toxicity in human blood. Cytotechnology 62: 157–165. http://dx.doi.org/10.1007/s10616-010-9272-2CrossrefGoogle Scholar

  • [57] Turkez H., Geyikoglu F., Dirican E. & Tatar A. 2012. In vitro studies on chemoprotective effect of borax against aflatoxin B1-induced genetic damage in human lymphocytes. Cytotechnology 64: 607–612. http://dx.doi.org/10.1007/s10616-012-9454-1CrossrefGoogle Scholar

  • [58] Turner S.D., Tinwell H., Piegorsch W., Schmezer P. & Ashby J. 2001. The male rat carcinogens limonene and sodium saccharin are not mutagenic to male big blue rats. Mutagenesis 16: 329–332. http://dx.doi.org/10.1093/mutage/16.4.329CrossrefGoogle Scholar

  • [59] Wang W., Li N., Luo M., Zu Y. & Efferth T. 2012. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules 17: 2704–2713. CrossrefGoogle Scholar

  • [60] Wang W., Wu N., Zu Y.G. & Fu Y.J. 2008. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem. 108: 1019–1022. CrossrefGoogle Scholar

  • [61] Wei A. & Shibamoto T. 2007. Antioxidant activities and volatile constituents of various essential oils. J. Agric. Food Chem. 55: 1737–1742. http://dx.doi.org/10.1021/jf062959xCrossrefGoogle Scholar

  • [62] Wu C.S., Chen Y.J., Chen J.J., Shieh J.J., Huang C.H., Lin P.S., Chang G.C., Chang J.T. & Lin C.C. 2012. Terpinen-4-ol induces apoptosis in human nonsmall cell lung cancer in vitro and in vivo. Evid. Based Complement. Alternat. Med., Article ID: 818261. Google Scholar

About the article

Published Online: 2013-08-31

Published in Print: 2013-10-01


Citation Information: Biologia, Volume 68, Issue 5, Pages 1004–1009, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-013-0230-2.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Hasan Turkez, Ozlem Ozdemir Tozlu, Tamires Cardoso Lima, Anna Emmanuela Medeiros de Brito, and Damião Pergentino de Sousa
Oxidative Medicine and Cellular Longevity, 2018, Volume 2018, Page 1
[3]
Guishan Lin, Wengui Duan, Hongqiang Liu, Yuan Ma, and Fuhou Lei
Chemistry of Natural Compounds, 2018
[4]
Chen Yang, Lihong Jiang, Huaibo Wang, Yane Zheng, and Yaming Wang
Korean Journal of Chemical Engineering, 2017
[5]
Yunqi Zhao, Ran Chen, Yun Wang, and Yixin Yang
Chemotherapy, 2018, Page 1
[6]
Danuta Sugier, Piotr Sugier, Radosław Kowalski, Barbara Kołodziej, and Katarzyna Olesińska
Industrial Crops and Products, 2017, Volume 109, Page 587
[7]
J. Labokas, K. Ložienė, and R. Jurevičiūtė
Industrial Crops and Products, 2017, Volume 109, Page 542
[8]
Zhaojiang Zuo, Bin Wang, Binbin Ying, Lv Zhou, and Rumin Zhang
Trees, 2017
[10]
Li-Yun Lin, Chiung-Chi Peng, Hui-Er Wang, Yen-Wei Liu, Kun-Hung Shen, Kuan-Chou Chen, and Robert Y. Peng
Journal of Essential Oil Bearing Plants, 2016, Volume 19, Number 8, Page 1957
[11]
Simona Piccolella, Paola Nocera, Petronia Carillo, Pasqualina Woodrow, Vincenza Greco, Lorenzo Manti, Antonio Fiorentino, and Severina Pacifico
Food and Chemical Toxicology, 2016, Volume 95, Page 64
[12]
Maryam Sadoughinia and Jinous Asgarpanah
Journal of Essential Oil Research, 2016, Volume 28, Number 3, Page 260
[13]
Cristiane I. Cerceau, Luiz C.A. Barbosa, Claudinei A. Filomeno, Elson S. Alvarenga, Antônio J. Demuner, and Paulo H. Fidencio
Talanta, 2016, Volume 150, Page 97
[14]
Cristina Anamaria Semeniuc, Ancuţa Rotar, Laura Stan, Carmen Rodica Pop, Sonia Socaci, Vioara Mireşan, and Sevastița Muste
CyTA - Journal of Food, 2016, Volume 14, Number 2, Page 213
[15]
Faruck Lukmanul Hakkim, Mohammed Al-Buloshi, and Jamal Al-Sabahi
Asian Pacific Journal of Tropical Biomedicine, 2015, Volume 5, Number 10, Page 824
[16]
Weiqiang Chen, Ying Liu, Ming Li, Jianwen Mao, Lirong Zhang, Rongbo Huang, Xiaobao Jin, and Lianbao Ye
Journal of Pharmacological Sciences, 2015, Volume 127, Number 3, Page 332
[17]
Ying-Ju Chen, Chun-Ya Lin, Sen-Sung Cheng, and Shang-Tzen Chang
Journal of Agricultural and Food Chemistry, 2015, Volume 63, Number 3, Page 810
[18]
Hasan Turkez, Basak Togar, Abdulgani Tatar, Fatime Geyıkoglu, and Ahmet Hacımuftuoglu
Biologia, 2014, Volume 69, Number 7

Comments (0)

Please log in or register to comment.
Log in