Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 68, Issue 6

Issues

Differences in transpiration of Norway spruce drought stressed trees and trees well supplied with water

Katarína Střelcová
  • Department of Natural Environment, Forestry Faculty, Technical University in Zvolen, T. G. Masaryka 24, SK-96053, Zvolen, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Kurjak
  • Department of Natural Environment, Forestry Faculty, Technical University in Zvolen, T. G. Masaryka 24, SK-96053, Zvolen, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adriana Leštianska
  • Department of Natural Environment, Forestry Faculty, Technical University in Zvolen, T. G. Masaryka 24, SK-96053, Zvolen, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dana Kovalčíková
  • Department of Natural Environment, Forestry Faculty, Technical University in Zvolen, T. G. Masaryka 24, SK-96053, Zvolen, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ľubica Ditmarová / Jaroslav Škvarenina
  • Department of Natural Environment, Forestry Faculty, Technical University in Zvolen, T. G. Masaryka 24, SK-96053, Zvolen, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yousif Ahmed
Published Online: 2013-10-20 | DOI: https://doi.org/10.2478/s11756-013-0257-4

Abstract

The paper focuses on the evaluation of transpiration as a physiological process, which is very sensitive to drought stress. Reactions of 25-year-old Norway spruce (Picea abies (L.) Karst.) trees to drought were examined during 2009 summer. Sap flow rate (SF), meteorological and soil characteristics were measured continually. Vapour pressure deficit of the air (VPD) and cumulative transpiration deficit (KTD) was calculated. During the second half of the vegetation period, the decrease in soil water content was observed and irrigation was applied to a group of spruce trees, while the second group was treated under natural soil drought. On the days, when the differences in transpiration between irrigated (IR) and non-irrigated (NIR) trees were significant (21 days), transpiration of NIR trees was only 23% of the transpiration of IR trees. We found significant differences in transpiration when the soil water content (SWC) of NIR variant at a depth of 5–15 cm ranged from 10.4 to 13.7%. Under both regimes of water availability, daily transpiration significantly responded to atmospheric conditions. However, the influence of all assessed meteorological parameters on SF of NIR trees was significantly lower than on IR tree. The dependency of transpiration on evaporative demands of atmosphere decreased with the decreasing soil moisture. Cumulative transpiration deficit of the stand during the entire evaluated period was 50.9 mm. The difference between the transpiration of the mean NIR tree and of the mean IR tree was 278.8 L over the assessed period of 47 days (5.9 L per day). The transpiration of NIR trees was 40.3% from the transpiration of IR trees during this period.

Keywords: Picea abies; drought stress; soil moisture; sap flow; transpiration deficit

  • [1] Beniston M. & Innes J.L. (eds) 1998. The impacts of climate variability on forests. Lectures Notes in Earth Sciences 74, Springer-Verlag, Berlin. Google Scholar

  • [2] Bredemeier M., Cohen S., Godbold, D.L., Lode E., Pichler V. & Schleppi P. (eds) 2011. Forest Management and the Water Cycle. An Eosystem-Based Approach. Ecological Studies 212, Springer, 531 pp. Google Scholar

  • [3] Cienciala E., Kučera J., Lindroth A., Čermák J., Grelle A. & Halldin S. 1997. Canopy transpiration from a boreal forest in Sweden during a dry year. Agr. Forest Meteorol. 86: 157–167. http://dx.doi.org/10.1016/S0168-1923(97)00026-9CrossrefGoogle Scholar

  • [4] Clausnitzer F., Köster B., Schwärzel K. & Bernhofer C. 2011. Relationships between canopy transpiration, atmospheric conditions and soil water availability — Analyses of long-term sap- flow measurements in an old Norway spruce forest at the Ore Mountains/Germany. Agr. Forest Meteorol. 151: 1023–1034. http://dx.doi.org/10.1016/j.agrformet.2011.04.007Web of ScienceCrossrefGoogle Scholar

  • [5] Čermák J. & Kučera J. 1981. The compensation of natural temperature gradient in the measuring point during the sap flow rate determination in trees. Biol. Plant. 23: 496–471. Google Scholar

  • [6] Dalsgaard L., Mikkelsen T.N. & Bastrup-Birk A. 2011. Sap flow for beech (Fagus sylvatica L.) in a natural and managed forest-effect of spatial heterogeneity. J. Plant Ecol. 4: 23–35. http://dx.doi.org/10.1093/jpe/rtq037CrossrefWeb of ScienceGoogle Scholar

  • [7] Dragoni D., Caylor K.K. & Schmid H.P. 2009. Decoupling structural and environmental determinants of sap velocity. Part II. Observational application. Agr. Forest Meteorol. 149: 570–581. http://dx.doi.org/10.1016/j.agrformet.2008.10.010Web of ScienceCrossrefGoogle Scholar

  • [8] Gartner K., Nadezhdina N., Englisch M., Čermák J. & Leitgeb E. 2009. Sap flow of birch and Norway spruce during the European heat and drought in summer 2003. Forest Ecol. Manag. 258: 590–599. http://dx.doi.org/10.1016/j.foreco.2009.04.028Google Scholar

  • [9] Homolák M., Capuliak J., Pichler V. & Lichner Ľ. 2009. Estimating hydraulic conductivity of a sandy soil under different plant covers using minidisc infiltrometer and a dye tracer experiment. Biologia 64: 600–604. http://dx.doi.org/10.2478/s11756-009-0088-5CrossrefWeb of ScienceGoogle Scholar

  • [10] Hríbik M., Vida T., Škvarenina J., Škvareninová J. & Ivan L. 2012. Hydrological effects of Norway spruce and European beech on snow cover in a mid-mountain region of the Polana Mts., Slovakia. J. Hydrol. Hydromech. 60: 319–332. Web of ScienceGoogle Scholar

  • [11] Jakuš R., Edwards-Jonášová M., Cudlín P., Blaženec M., Ježík M., Havláček F. & Moravec I. 2011. Characteristics of Norway spruce trees (Picea abies) surviving a spruce bark beetle. Trees 25: 965–973. http://dx.doi.org/10.1007/s00468-011-0571-9CrossrefGoogle Scholar

  • [12] Klein T., Rotenberg E., Cohen-Hilaleh E., Raz-Yaseef N., Tatarinov F., Preisler Y., Ogée J., Cohen S. & Yakir D. 2012. Quantifying transpirable soil water and its relations to tree water use dynamics in a water-limited pine forest. Ecohydrol. DOI: 10.1002/eco.1360 CrossrefWeb of ScienceGoogle Scholar

  • [13] Köhler M., Schwendenmann L. & Hölscher D. 2010. Throughfall reduction in a cacao agroforest: tree water use and soil water budgeting. Agric. Forest Meteorol. 150: 1079–1089. http://dx.doi.org/10.1016/j.agrformet.2010.04.005Web of ScienceCrossrefGoogle Scholar

  • [14] Kulla L. & Sitková Z. (eds) 2012. Rekonštrukcie nepôvodných smrekových lesov: poznatky, skúsenosti, odporúčania. NLC — Lesnícky výskumný ústav Zvolen. Zvolen 2012, 208 pp. Google Scholar

  • [15] Kurjak D., Střelcová K., Ditmarová Ľ., Priwitzer T., Kmeť J., Homolák, M. & Pichler V. 2012. Physiological response of irrigated and non-irrigated Norway spruce trees as a consequence of drought in field conditions. Eur. J. Forest Res. 131: 1737–1746. http://dx.doi.org/10.1007/s10342-012-0611-zWeb of ScienceCrossrefGoogle Scholar

  • [16] Lagergren F. & Lindroth A. 2002. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agric. Forest Meteorol. 112: 67–85. http://dx.doi.org/10.1016/S0168-1923(02)00060-6CrossrefGoogle Scholar

  • [17] Lichner Ľ., Holko L., Zhukova N., Schacht K., Rajkai K., Fodor N. & Sándor R. 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech. 60: 309–318. Web of ScienceGoogle Scholar

  • [18] Lu P., Biron P., Bréda N. & Granier A. 1995. Water relations of adult Norway spruce (Picea abies (L.) Karst) under soil drought in the Vosges mountains: water potential, stomatal conductance and transpiration. Ann. Forest Sci. 52: 117–129. http://dx.doi.org/10.1051/forest:19950203CrossrefGoogle Scholar

  • [19] Matejka F., Střelcová K., Hurtalová T., Gömöryová, E. & Ditmarová Ľ. 2009. Seasonal changes in transpiration and soil water content in a spruce primeval forest during a dry period. In: Střelcová K., Matyas C., Kleidon A., Lapin M., Matejka F., Blaženec M., Škvarenina J. & Holécy J. (eds), Bioclimatology and Natural Hazards, Springer, 298 pp. Google Scholar

  • [20] Mauer O., Bagár R. & Palátová E. 2008. Response of the Norway spruce (Picea abies [L.] Karst.) root system to changing humidity and temperature conditions of the site. J. Forest Sci. 54: 245–254. Google Scholar

  • [21] Nadezhdina N., David T.S., David J.S., Ferreira M.I., Dohnal M., Tesař M., Gartner K., Leitgeb E., Nadezhdin V., Cermak J., Jimenez MS. & Moraleset D. 2010. Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrol. 3: 431–444. http://dx.doi.org/10.1002/eco.148CrossrefGoogle Scholar

  • [22] Tesař M., Šír M., Lichner Ľ. & Zelenková E. 2006. Influence of vegetation cover on thermal mountainous catchments. Biologia 61(Suppl. 19): 311–314. Web of ScienceGoogle Scholar

About the article

Published Online: 2013-10-20

Published in Print: 2013-12-01


Citation Information: Biologia, Volume 68, Issue 6, Pages 1118–1122, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-013-0257-4.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Darina Babálová, Jana Škvareninová, Juraj Fazekaš, and Ilja Vyskot
Sustainability, 2018, Volume 10, Number 5, Page 1497
[2]
Inken Rabbel, Heye Bogena, Burkhard Neuwirth, and Bernd Diekkrüger
Water, 2018, Volume 10, Number 3, Page 279

Comments (0)

Please log in or register to comment.
Log in