Jump to ContentJump to Main Navigation
Show Summary Details
More options …


12 Issues per year

IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

See all formats and pricing
More options …
Volume 68, Issue 6


The diversity and longitudinal changes of zooplankton in the lower course of a large, regulated European river (the lower Vistula River, Poland)

Paweł Napiórkowski
  • Department of Hydrobiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Gagarina 9, 87-100, Toruń, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Teresa Napiórkowska
  • Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Gagarina 9, 87-100, Toruń, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-20 | DOI: https://doi.org/10.2478/s11756-013-0263-6


The diversity and longitudinal variation of zooplankton in the lower Vistula River were analyzed. Samples were taken from 40 stations located along a 272-km long section of the lower river course. During the study the unique technique of taking samples from “the same water” was used. The zooplankton community was dominated by rotifers and nauplii — larval stages of copepods. The most abundant species were: Brachionus angularis, Brachionus calyciflorus and Brachionus budapestiensis. The zooplankton species diversity in the main channel of the lower Vistula River was similar to other large European rivers; however, its abundance was lower. The diversity, abundance and biomass of potamoplankton steadily decreased downstream. This could be related both to scarcity of storage zones for potamoplankton development in the river due to the extensive regulation processes, and changes in hydrological conditions of the main channel (by the straightening of riverbed) where the samples were collected.

Keywords: zooplankton; river; Rotifera; Crustacea; Vistula

  • [1] Akopian M., Garnier J. & Pourriot R. 1999. A large reservoir as a source of zooplankton for the river: structure of the populations and influence of fish predation. J. Plankton Res. 21(2): 285–297. DOI: 10.1093/plankt/21.2.285 http://dx.doi.org/10.1093/plankt/21.2.285CrossrefGoogle Scholar

  • [2] Baranyi C., Hein T., Holarek C., Keckeis S. & Schiemer F. 2002. Zooplankton biomass and community structure in a Danube River floodplain system: effect of hydrology. Freshwater Biol. 47(3): 473–482. DOI: 10.1046/j.1365-2427.2002.00822.x http://dx.doi.org/10.1046/j.1365-2427.2002.00822.xCrossrefGoogle Scholar

  • [3] Basu K.B. & Pick F.R. 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol. Oceanogr. 41(7): 1572–1577. http://dx.doi.org/10.4319/lo.1996.41.7.1572CrossrefGoogle Scholar

  • [4] Bednarz T. & Żurek R. 1988. A regulated river ecosystem in polluted section of the Upper Vistula. Acta Hydrobiol. 30(1/2): 43–59. Google Scholar

  • [5] Bij de Vaate A., Jażdżewski K., Ketelaars H., Gollasch S. & Van der Velde G. 2002. Geographical patterns in range expansion of macroinvertebrate Ponto-Caspian species in Europe. Can. J. Fish. Aquat. Sci. 59: 1159–1174. DOI: 10.1139/F02-098 http://dx.doi.org/10.1139/f02-098CrossrefGoogle Scholar

  • [6] Dembowska E. & Napiórkowski P. 2012. Dlaczego warto chronić starorzecza? [Why you should protect the old river beds?]. Kosmos 61(2): 341–349. Google Scholar

  • [7] Demetraki-Paleolog A. 2004. Planktonic rotifers diversity in selected rivers of the Vistula, Wieprz and San drainage-basins. Teka Kom.Ochr. Kszt. Środ. Przyr. 1: 44–50. Google Scholar

  • [8] Downing J.A. & Rigler F.H. (eds). 1984. A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. 2nd ed. IBP Hand Book 17, Oxford: Blackwell Scientific Publications, 501 pp. ISBN: 0-632-00616-1 Google Scholar

  • [9] Einsle U. 1996. Copepoda: Cyclopoida: Genera Cyclops, Megacyclops, Acanthocyclops. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, SPB Acad. Publ. bv., Amsterdam, 82 pp. ISBN: 9051031254 Google Scholar

  • [10] Ejsmont-Karabin J., Gorelysheva Z., Kalinowska K. & Węgleńska T. 2004. Role of zooplankton (Ciliata, Rotifera and Crustacea) in phosphorus removal from cycling: lakes of the River Jorka Watershed (Masuria Lakeland, Poland). Pol. J. Ecol. 52(3): 275–284. Google Scholar

  • [11] Ejsmont-Karabin J. & Węgleńska T. 1996. Przemiany struktury zooplanktonu w strefach przejściowych rzeka — jezioro — rzeka (System rzeki Krutyni, Pojezierze Mazurskie) [Changes in the zooplankton structure in the transitory river — lake — river zone. The River Krutynia system, Mazurian Lake District]. Zesz. Naukowe Kom. „Człowiek i Środowisko” 13: 263–289. Google Scholar

  • [12] Ferrari I., Farabegoli A. & Mazzani R. 1989. Abundance and diversity of planktonic rotifers in the Po River. Hydrobiologia 186: 201–208. DOI: 10.1007/BF00048913 http://dx.doi.org/10.1007/BF00048913CrossrefGoogle Scholar

  • [13] Flössner D. 1972. Krebstiere, Crustacea. Kiemen und Blattfüsser, Branchiopoda, Fischläuse, Branchiura. In: Die Tierwelt Deutschland und der angrenzenden Meeresteile nach ihren Merkmalen und nach ihrer Lebensweise, 60 Teil, VEB Gustav Fischer Verlag, Jena, 501 pp. Google Scholar

  • [14] Friedrich G. & Pohlmann M. 2009. Long-term plankton studies at the lower Rhine/Germany. Limnologica 39(1): 14–39. DOI: 10.1016/j.limno.2008.03.006 http://dx.doi.org/10.1016/j.limno.2008.03.006CrossrefGoogle Scholar

  • [15] Głogowska B. 2000. A geographical and hydrological profile of the study area, pp. 11–21. In: Giziński A. (ed.), Hydrobiology of the lower Vistula River between Wyszogród and Toruń. An Assessment of the Influence of the Włocławek Dam on the Structure and Functions of the River Ecosystem, Part II, AUNC Limnological Papers, No. 21. Google Scholar

  • [16] Greenberg A.E., Clesceri L.S. & Eaton A.D. (eds). 1992. Standard Methods for the Examination of Water and Wastewater. 18th Ed. American Public Health Association, American Water Works Association, Water Environment Federation. 1100 pp. ISBN-10: 0875532071 Google Scholar

  • [17] Dziennik Ustaw Rzeczypospolitej Polskiej (DzU) [Journal of Laws RP]. 2008. No 162, item 1008, 20 august 2008, Warsaw, pp. 8654–8681. Google Scholar

  • [18] Kasprzak K. & Niedbała W. 1981. Wskazniki biocenotyczne stosowane przy porzšdkowaniu i analizie danych w badaniach ilościowych [Biocenotic indicators used for ordering and analyzing data in quantitive research], pp. 379–416. In: Górny M. & Grüm L. (eds), Metody stosowane w zoologii gleby [Methods used in Soil Zoology], PWN, Warsaw, 483 pp. Google Scholar

  • [19] Kentzer A. 2009. Influence of the Włocławek Reservoir on the quality of waters in the Bay of Gdańsk. Limnol. Papers 4(1): 9–14. DOI: 10.2478/v10232-011-0022-z CrossrefGoogle Scholar

  • [20] Kentzer A., Dembowska E., Giziński A. & Napiórkowski P. 2010. Influence of the Włocławek Reservoir on hydrochemistry and plankton of a large, lowland river (the Lower Vistula River, Poland). Ecol. Engineer. 36(12): 1747–1753. DOI: 10.1016/j.ecoleng.2010.07.024 http://dx.doi.org/10.1016/j.ecoleng.2010.07.024CrossrefGoogle Scholar

  • [21] Kiefer F. 1978. Freilebende Copepoda, pp. 1–343 In: Kiefer F. & Fryer G., Das Zooplankton der Binnengewässer, Die Binnengew ässer 26 Teil 2, Stuttgart, 380 pp. ISBN: 978-3-510-40036-2 Google Scholar

  • [22] Kowalkowski T., Pastuszek M., Igras J. & Buszewski B. 2012. Differences in emission of nitrogen and phosphorus in to the Vistula and Oder basins in 1995–2008 — Natural and anthropogenic causes (MONERIS model). J. Mar. Syst. 89(1): 48–60. DOI: 10.1016/j.jmarsys.2011.07.011 http://dx.doi.org/10.1016/j.jmarsys.2011.07.011CrossrefGoogle Scholar

  • [23] Krzanowski W. 1987. Zooplankton of the Wisła — Czarne dam reservoir (Southern Poland) in the years 1975–1984. Acta Hydrobiol. (Cracow) 29(4): 417–427. Google Scholar

  • [24] Kruk-Dowgiałło L & Szaniawska A. 2008. Gulf of Gdańsk and Puck Bay, pp. 139–165. In: Schiewer U. (ed.), Ecology of Baltic Costal Waters, Ecological Studies 197, Springer Berlin — Heidelberg. ISBN: 978-3-540-73523-6 http://dx.doi.org/10.1007/978-3-540-73524-3_7CrossrefGoogle Scholar

  • [25] Lair N. 2005. Abiotic vs. biotic factors: lessons drawn from rotifers in the Middle Loire a meandering river monitored from 1995 to 2002, during low flow periods. Hydrobiologia 546: 457–472. DOI: 10.1007/s10750-005-4289-9 http://dx.doi.org/10.1007/s10750-005-4289-9CrossrefGoogle Scholar

  • [26] Lair N. 2006. A review of regulation mechanisms of metazoan plankton in riverine ecosystems: Aquatic habitat versus biota. River Res. Appl. 22(5): 567–593. DOI: 10.1002/rra.923 http://dx.doi.org/10.1002/rra.923CrossrefGoogle Scholar

  • [27] Lair N. & Reyes-Marchant P. 1997. The potamoplankton of the middle Loire and the role of the moving littoral in downstream transfer of algae and rotifers. Hydrobiologia 356: 33–52. DOI: 10.1023/A:1003127230386 http://dx.doi.org/10.1023/A:1003127230386CrossrefGoogle Scholar

  • [28] Marneffe Y., Descy J.P. & Thome J.P. 1996. The zooplankton of the lower river Meuse, Belgium: seasonal changes and impact of industrial and municipal discharges. Hydrobiologia 319(1): 1–13. DOI: 10.1007/BF00020966 http://dx.doi.org/10.1007/BF00020966CrossrefGoogle Scholar

  • [29] May L. & Bass J.A.B. 1998. A study of rotifers in the River Thames, England, April-October, 1996. Hydrobiologia 387: 251–257. DOI: 10.1023/A:1017073223382 http://dx.doi.org/10.1023/A:1017073223382CrossrefGoogle Scholar

  • [30] Mieszczankin T. 2009. The influence of the saline, industrial contaminants on the water quality of the Vistula River near the city of Toruń. Limnol. Papers 4(1): 25–32. DOI: 10.2478/v10232-011-0024-x CrossrefGoogle Scholar

  • [31] Napiórkowski P. 2009. Influence of hydrological condition on zooplankton of oxbow lakes (old riverbeds) of the Lower Vistula River in the city of Toruń. Limnol. Papers 4(1): 55–67. DOI: 10.2478/v10232-011-0027-7 CrossrefGoogle Scholar

  • [32] Napiórkowski P., Kentzer A. & Dembowska E. 2006. Zooplankton of the lower Vistula River: the effect of Włocławek Dam Reservoir (Poland) on community structure. Verh. Int. Verein. Limnol. 29: 2109–2114. Google Scholar

  • [33] Nogrady T., Wallace R.L. & Snell T.W. 1993. Rotifera 1. Biology, Ecology and Systematic. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, SPB Acad. Publ. bv., The Hague, 142 pp. ISBN: 9051030800 Google Scholar

  • [34] Papińska K. 1990. Abundance and composition of Rotifers in Vistula River. Pol. Arch. Hydrobiol. 37(3): 449–459. Google Scholar

  • [35] Pastuszek M., Stalnacke P., Pawlikowski K. & Witek Z. 2012. Response of Polish rivers (Vistula, Oder) to reduce pressure from point sources and agriculture during the transition period (1988–2008). J. Marine Syst. 94: 157–173. DOI: 10.1016/j.jmarsys.2011.11.017 http://dx.doi.org/10.1016/j.jmarsys.2011.11.017CrossrefGoogle Scholar

  • [36] Pourriot R., Rougier C. & Miquelis A. 1997. Origin and development of river zooplankton: example of the Marne. Hydrobiologia 345(Part:2–3): 143–148. DOI: 10.1023/A:1002935807795 http://dx.doi.org/10.1023/A:1002935807795CrossrefGoogle Scholar

  • [37] Praszkiewicz A., Spodniewska I. & Węgleńska T. 1983. Seston Wisły i zbiorników kaskady Wisły na odcinku od ujścia Sanu do Włocławka. [Seston of the Vistula River and reservoirs of the Vistula cascade along the section from the San River Mouth till Włocławek], pp. 471–488. In: Kajak Z. (ed.), Ekologiczne podstawy zagospodarowania Wisły i jej dorzecza. [Ecological Basics of the Development of the Vistula and its Drainage Basin.], Polish Scientific Publications Warszawa — Łódź, 594 pp. ISBN: 8301041080, 9788301041083 Google Scholar

  • [38] Radwan S. (ed.) 2004. Wrotki (Rotifera). In: Seria: Fauna Słodkowodna Polski [Polish Freshwater Fauna], Tom 32, Cześć A, B, Tercja Press Łódź, 447 pp. Google Scholar

  • [39] Reckendorfer W., Keckeis H., Winkler G. & Schiemer F. 1999. Zooplankton abundance in the River Danube, Austria: the significance of inshore retention. Freshwater Biol. 41(3): 583–591. DOI: 10.1046/j.1365-2427.1999.00412.x http://dx.doi.org/10.1046/j.1365-2427.1999.00412.xCrossrefGoogle Scholar

  • [40] Rossetti G., Viaroli P. & Ferrari I. 2009. Role of abiotic and biotic factors in structuring the metazoan plankton community in a lowland river. River Res. Appl. 25(7): 814–835. DOI: 10.1002/rra.1170 http://dx.doi.org/10.1002/rra.1170CrossrefGoogle Scholar

  • [41] Rybak J.I. & Błedzki L.A. 2010. Słodkowodne skorupiaki planktonowe [Freshwater planktonic Crustacea], WUW Warsaw, 365 pp. ISBN: 978-83-235-0738-3 Google Scholar

  • [42] Segers H. 2007. Annotated checklist of the rotifers (Phylum Rotifera) with notes on nomenclature, taxonomy and distribution. Zootaxa 1564, 104 pp. Google Scholar

  • [43] Shiel R.J. 1985. Zooplankton of the Darling River system, Australia. Verh. Int. Verein. Limnol. 22: 2136–2140 Google Scholar

  • [44] Schöll K. 2009. Diversity of planktonic rotifer assemblages in the water bodies of the Gemenc floodplain (Duna-Drava National Park, Hungary). Biologia 64(5): 951–958. DOI: 10.2478/s11756-009-0153-0 http://dx.doi.org/10.2478/s11756-009-0153-0CrossrefGoogle Scholar

  • [45] Słoń J. & Kowalczewski A. 1991. Spatial differentiation of environmental conditions and seston in the Vistula in the Warsaw area. Ekol. Pol. 39(3): 291–321. Google Scholar

  • [46] Smirnov N.N. 1996. Cladocera: The Chydoridae and Sayciinae (Chydoridae) of the World. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, SPB Acad. Publ. bv., Amsterdam, 197 pp. ISBN: 9051031297 Google Scholar

  • [47] Starzykowa K. 1972. Population of Cladocera and Copepoda in dam reservoirs of southern Poland. Acta Hydrobiol. 14(1): 37–55. Google Scholar

  • [48] Szlauer B. & Szlauer L. 1994. The zooplankton of Odra River in Szczecin. Scientific notebooks of Agriculture Academy in Szczecin 164: 23–39. Google Scholar

  • [49] Tockner K., Uehlinger U. & Robinson C.T. 2009. Rivers of Europe. Academic Press, London, 728 pp. ISBN-13: 978-0-12-369449-2 Google Scholar

  • [50] Thorp J.H., Black A.R., Haag K.H. & Wehr J.D. 1994. Zooplankton assemblages in the Ohio River: seasonal, tributary and navigation dam effects. Can. J. Fish. Aquat. Sci. 51(7): 1634–1643. DOI: 10.1139/f94-164 http://dx.doi.org/10.1139/f94-164CrossrefGoogle Scholar

  • [51] Vadadi-Fülöp C., Hufnagel L., Jablonszky G. & Zsuga K. 2009. Crustacean plankton abundance in the Danube River and in its arms in Hungary. Biologia 64(6): 1184–1195. DOI: 10.2478/s11756-009-0202-8 http://dx.doi.org/10.2478/s11756-009-0202-8CrossrefGoogle Scholar

  • [52] Vadadi-Fülöp C., Hufnagel L & Zsuga K. 2010. Effect of sampling effort and sampling frequency on the composition of the planktonic crustacean assemblage: a case study of the river Danube. Environ. Monitor. Assess. 163(1–4): 125–138. DOI: 10.1007/s10661-009-0822-z http://dx.doi.org/10.1007/s10661-009-0822-zCrossrefGoogle Scholar

  • [53] van Dijk G.M. & van Zanten B. 1995. Seasonal changes in zooplankton abundance in the lower Rhine during 1987–1991. Hydrobiologia 304(1): 29–38. http://dx.doi.org/10.1007/BF02530701CrossrefGoogle Scholar

  • [54] Viroux L. 1997. Zooplankton development in two large lowland rivers, the Moselle (France) and the Meuse (Belgium), in 1993. J. Plankton Res. 19(11): 1743–1762. DOI: 10.1093/PLANKT/19.11.1743 http://plankt.oxfordjournals.org/content/19/11/1743.full.pdf http://dx.doi.org/10.1093/plankt/19.11.1743CrossrefGoogle Scholar

  • [55] Welker M. & Walz N. 1998. Can mussels control the plankton in rivers? — A planktological approach applying a Lagrangian sampling strategy. Limnol. Oceanogr. 43(5): 153–762. http://dx.doi.org/10.4319/lo.1998.43.5.0753CrossrefGoogle Scholar

  • [56] Zimmermann-Timm H., Holst H. & Kausch H. 2007. Spatial dynamics of rotifers in a large lowland river, the Elbe, Germany: How important are retentive shoreline habitats for plankton community? Hydrobiologia 593: 49–58. DOI: 10.1007/s10750-007-9046-9 http://dx.doi.org/10.1007/s10750-007-9046-9CrossrefGoogle Scholar

  • [57] Żurek R. & Bucka H. 2004. Horizontal distribution of phytoplankton and zooplankton from the littoral towards open waters under wind stress. Oceanol. Hydrobiol. Stud. 33(3): 69–81. Google Scholar

  • [58] Żurek R. & Kasza H. 2002. Upper Vistula River: response of aquatic communities to pollution and impoundment. Pol. J. Ecol. 50(2): 107–122. Google Scholar

About the article

Published Online: 2013-10-20

Published in Print: 2013-12-01

Citation Information: Biologia, Volume 68, Issue 6, Pages 1163–1171, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-013-0263-6.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Songlu Liu, Xinlu Shi, Henglong Xu, Guijie Liu, Cuicui Hou, and Xiaowen Zhu
Acta Ecologica Sinica, 2016, Volume 36, Number 4, Page 236

Comments (0)

Please log in or register to comment.
Log in