Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year


IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 68, Issue 6 (Dec 2013)

Issues

Therapeutic potential of Lactobacillus ingluviei ADK10, a newly established probiotic organism against acetaminophen induced uremic rats

Arpita Mandal
  • Department of Microbiology, Nutrition, and Human Physiology, Raja N L Khans Women’s College, Midnapore, 721102, West Bengal, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tanmay Paul / Suchismita Roy
  • Department of Microbiology, Nutrition, and Human Physiology, Raja N L Khans Women’s College, Midnapore, 721102, West Bengal, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shreya Mandal
  • Department of Microbiology, Nutrition, and Human Physiology, Raja N L Khans Women’s College, Midnapore, 721102, West Bengal, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shrabani Pradhan
  • Department of Microbiology, Nutrition, and Human Physiology, Raja N L Khans Women’s College, Midnapore, 721102, West Bengal, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Koushik Das
  • Department of Microbiology, Nutrition, and Human Physiology, Raja N L Khans Women’s College, Midnapore, 721102, West Bengal, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Keshab Mondal / Dilip Nandi
  • Department of Microbiology, Nutrition, and Human Physiology, Raja N L Khans Women’s College, Midnapore, 721102, West Bengal, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-20 | DOI: https://doi.org/10.2478/s11756-013-0278-z

Abstract

In the present study, Lactobacillus ingluviei ADK10 (Acc. No. JQ395039) from intestinal origin was tested for its probiotic characteristic as well as uremia ameliorating activity on acetaminophen induced uremic rats. The results revealed that L. ingluviei ADK10 was able to tolerate pH 3.0–9.0 and 0.5% bile salt along with good hydrophobicity (67%) and adherence index with Ht-29 cell line on 258/100 cells. It was susceptible to 20 antibiotics. The organism was able to degrade food ingredients, like starch and milk proteins. The strain showed significant growth inhibition of Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Shigella dysentery, Pseudomonas aeruginosa, and Klebsiella pneumoniae (average diameter of 10 mm). The therapeutic potentiality of this probiotic bacterium was tested against acetaminophen induced uremic rats. It was found that supplementation of L. ingluviei ADK10 for 14 days with food reduced severe increase of uremic profiles, such as blood urea (85%), creatinine (68%) and uric acid (41%) in comparison to the uremic rats. Moreover, during the feeding of rats with probiotic strain at a dose of 1×109 bacteria, reduction of enterobacteria in faeces was observed. Our studies indicated that L. ingluviei ADK10 could be used as a health-promoting probiotic along with antiuremic efficacy.

Keywords: probiotic properties; Lactobacillus ingluviei ADK10; antiuremic efficacy

  • [1] Abdel-Zaher O.A., Abdel-Rahman M.M. & Hafez M.M 2007. Role of nitric oxide and reduced glutathione in the protective effects of aminoguanidine, gadolinium chloride and oleanolic acid against acetaminophen induced hepatic and renal damage. Toxicology 243: 124–134. http://dx.doi.org/10.1016/j.tox.2007.02.014CrossrefWeb of ScienceGoogle Scholar

  • [2] Bliss D.Z., Stein T.P., Schleifer C.R. & Settle R.G. 1996. Supplementation with gum arabic fiber increases fecal nitrogen excretion and lowers serum urea nitrogen concentration in chronic renal failure patients consuming a low-protein diet. Am. J. Clin. Nutr. 63: 392–398. Google Scholar

  • [3] Burtis C.A. & Ashwood E.R. 1999. Tietz Textbook of Clinical Chemistry. 3rd Edn, WB Saunders Company, Philadelphia. Google Scholar

  • [4] Charteris W.P., Kelly P.M., Morelli L. & Collin J.K. 1998. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lacto bacillus and Bifidobacterium species in the upper human gastrointestinal tract. J. Appl. Microbiol. 84: 759–768. http://dx.doi.org/10.1046/j.1365-2672.1998.00407.xCrossrefGoogle Scholar

  • [5] Chauviere G., Cocoinnier M.H., Kerneis S., Fourniat J. & Servin A.L. 1992. Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells. J. Gen. Microbiol. 138: 1689–1696. http://dx.doi.org/10.1099/00221287-138-8-1689CrossrefGoogle Scholar

  • [6] Duangjitcharoen Y., Kantachote D., Ongsakul M., Poosaran N. & Chaiyasut C. 2008. Selection of probiotic lactic acid bacteria isolated from fermented plant beverages. Pak. J. Biol. Sci. 11: 652–655. http://dx.doi.org/10.3923/pjbs.2008.652.655CrossrefGoogle Scholar

  • [7] Erkkilä S. & Petäjä E. 2000. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55: 297–300. http://dx.doi.org/10.1016/S0309-1740(99)00156-4CrossrefGoogle Scholar

  • [8] Fossati P., Prencipe L. & Berti G. 1980. Use of 3,5-dichloro-2-hydroxy-benzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymetic assay of uric acid in serum and urine. Clin. Chem. 26: 227–231. Google Scholar

  • [9] Gilliland S.E. & Rich C.N. 1990. Stability during frozen and subsequent refrigerated storage of Lactobacillus acidophilus grown at different pH. J. Dairy Sci. 73: 1187–1192. http://dx.doi.org/10.3168/jds.S0022-0302(90)78781-4CrossrefGoogle Scholar

  • [10] Gomes D.A., Souza A.M.L., Lopes R.V., Nunes A.C. & Nicoli R.J. 2006. Comparison of antagonistic ability against enteropathogens by G+ and G-anaerobic dominant components of human fecal microbiota. Folia Microbiol. 51: 141–145. http://dx.doi.org/10.1007/BF02932170CrossrefGoogle Scholar

  • [11] Gopal P.K., Prasad J., Smart J. & Gill H.S. 2001. In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int. J. Food. Microbiol. 67: 207–216. http://dx.doi.org/10.1016/S0168-1605(01)00440-8CrossrefGoogle Scholar

  • [12] Hida M., Aiba Y. & Sawamura S. 1996. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin®, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 74: 349–355. http://dx.doi.org/10.1159/000189334CrossrefGoogle Scholar

  • [13] Jacobsen C.N., Rosenfeldt N.V., Hayford A.E. & Moller P.L. 1999. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol. 65: 4949–4956. Google Scholar

  • [14] Jain A.K., McLeod I. & Huo C. 2009. When laboratories report estimated glomerular filtration rates in addition to serum creatinines, nephrology consults increase. Kidney. Int. 76: 318–323. http://dx.doi.org/10.1038/ki.2009.158CrossrefGoogle Scholar

  • [15] Jones R.J., Hussein H.M. & Zagorec M. 2008. Isolation of lactic acid bacteria with inhibitory activity against pathogens and spoilage organisms associated with fresh meat. Food Microbiol. 25: 228–234. http://dx.doi.org/10.1016/j.fm.2007.11.001CrossrefGoogle Scholar

  • [16] Mandal A., Paul T., Roy S., Mandal S., Pradhan S., Mondal K.C. & Nandi D.K. 2013a. Effect of newly isolated Lactobacillus ingluviei ADK 10, from chicken intestinal tract on acetaminophen induced oxidative stress in Wistar rats. Indian J. Exp. Biol. 51: 174–180. Google Scholar

  • [17] Mandal A., Roy S., Das K., Mondal K. & Nandi D. 2013b. In vivo assessment of bacteriotherapy on acetaminophen induced uremic rats. J. Nephrol. 26: 228–236. http://dx.doi.org/10.5301/jn.5000129CrossrefWeb of ScienceGoogle Scholar

  • [18] Maragkoudakis P.A., Zoumpopoulou G., Miaris C., Kalantzopoulos G., Pot B. & Tsakalidou E. 2006. Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy. J. 16: 189–199. http://dx.doi.org/10.1016/j.idairyj.2005.02.009CrossrefGoogle Scholar

  • [19] Musikasang H., Tani A., H-kittikun A. & Maneerat S. 2009. Probiotic potential of lactic acid bacteria isolated from chicken gastrointestinal digestive tract. World J. Microbiol. Biotechnol. 25: 1337–1345. http://dx.doi.org/10.1007/s11274-009-0020-8Web of ScienceCrossrefGoogle Scholar

  • [20] Natarajan K.R. 1995. Kinetic study of the enzyme urease from Dolichos biflorus. J. Chem. Educ. 72: 556–557. http://dx.doi.org/10.1021/ed072p556CrossrefGoogle Scholar

  • [21] Olert E.D., Cross B.M. & McWilliam A.A. 1993. Guide to care and use of experimental animals, pp. 1–90. In: Olert E.D. & McWilliam B.M. (eds), Canadian Council on Animal Care, 2nd Edn, Ottawa. Google Scholar

  • [22] Ouwehand A.C. & Vesterlund S. 2004. 11 Antimicrobial components from lactic acid bacteria, pp. 375–395. In: Salminen S., Ouwehand A. & Von Wright A. (eds) Lactic Acid Bacteria: Microbial and Functional Aspects, 3rd Edn, Marcel Dekker, New York. Google Scholar

  • [23] Prakash S. & Chang T.M.S. 1996. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat. Med. 2: 883–887. http://dx.doi.org/10.1038/nm0896-883Google Scholar

  • [24] Rammelsberg M. & Radler F. 1990. Antibacterial polypeptides of Lactobacillus species. J. Appl. Bacteriol. 69: 177–184. http://dx.doi.org/10.1111/j.1365-2672.1990.tb01507.xCrossrefGoogle Scholar

  • [25] Ranganathan N., Patel B.G. & Ranganathan P. 2006. In vitro and in vivo assessment of intraintestinal bacteriotherapy in chronic kidney disease. ASAIO J. 52: 70–79. http://dx.doi.org/10.1097/01.mat.0000191345.45735.00CrossrefGoogle Scholar

  • [26] Rijnaarts H.H.M., Norde W., Bouwer E.J., Lyklema J. & Zehnder A.J.B. 1993. Bacterial adhesion under static and dynamic conditions. Appl. Environ. Microbiol. 59: 3255–3265. Google Scholar

  • [27] Sabbagh M., Rick W. & Schneide R.S. 1988. A kinetic method for the direct determination of creatinine in serum with 3,5-dinitrobenzoic acid without deproteinization. J. Clin. Chem. Clin. Biochem. 26: 15–24. Google Scholar

  • [28] Sparks R.E. 1979. Review of gastrointestinal perfusion in the treatment of uremia. Clin. Nephrol. 11: 81–85. Google Scholar

  • [29] Thapa N., Pal J. & Tamang J.P. 2004. Microbial diversity in ngari, hentak and tungtap, fermented fish products of North-East, India. World J. Microbiol. Biotechnol. 20: 599–607. http://dx.doi.org/10.1023/B:WIBI.0000043171.91027.7eCrossrefGoogle Scholar

About the article

Published Online: 2013-10-20

Published in Print: 2013-12-01


Citation Information: Biologia, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-013-0278-z.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in