Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 1

Issues

Infra-specific genetic and morphological diversity in Linum album (Linaceae)

Masoud Sheidai / Somayeh Ziaee / Fatemeh Farahani / Seyed-Mehdi Talebi / Zahra Noormohammadi / Yeganeh Farahani
Published Online: 2013-11-15 | DOI: https://doi.org/10.2478/s11756-013-0281-4

Abstract

The genus Linum L. (Lineacea) has over 15 species, subspecies or ecotypes in Iran. These species show extensive geographical distribution and form many local populations throughout the country. Linum album is herbaceous medicinal plant containing important lignans such as podophyllotoxin (PTOX) and 6-methoxy podophyllotoxin (MPTOX), which have antiviral and anticancer properties. Studying the genetic and morphological diversity of different geographical populations produces detailed knowledge about population divergence and identification of the infra-species taxa if at all they are present. Moreover, the populations that differ in their genetic content and structure may also differ in their chemical and medicinal properties. The present study considers morphological and genetic diversity analyses of 20 L. album geographical populations by using nuclear ISSR markers, genome size, and cytogenetic characteristics. These populations differed significantly in many of their quantitative morphological characters and in some of their qualitative features. They also differed significantly in their molecular characteristics and genome size. Details of morphological and molecular variations are reported and discussed.

Keywords: genetic variation; ISSR; morphological diversity; wild flax

  • [1] Chashmi N.A., Sharifi M., Yousefzadi M., Behmanesh M. & Palazon J. 2011. The production of cytotoxic lignans by hairy root cultures of Linum album. World Academy of Science, Engineering Tech. 56: 401–402. Google Scholar

  • [2] Diederichsen A. 2007. Ex situ collection of cultivated flax (Linum usitatissimum L.) and other species of the genus Linum L. Genet. Resour. Crop Evol. 54: 661–678. http://dx.doi.org/10.1007/s10722-006-9119-zCrossrefGoogle Scholar

  • [3] Doležel J. & Bartoš J. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Ann.Bot. 95: 99–110. http://dx.doi.org/10.1093/aob/mci005CrossrefGoogle Scholar

  • [4] Dwivedi S.L., Hari D., Upadhyaya H., Stalker T., Blair M.W., Bertioli D.J., Nielen S. & Ortiz R. 2008. Enhancing crop gene pools with beneficial traits using wild relatives. Plant Breed. Rev. 30: 179–230. http://dx.doi.org/10.1002/9780470380130.ch3CrossrefGoogle Scholar

  • [5] Everaert I., de Riek J., de Loose M., van Waes J. & van Bockstaele E. 2001. Most similar variety grouping for distinctness evaluation of flax and linseed (Linum usitatissimum L.) varieties by means of AFLP and morphological data. Plant Variet. Seeds 14: 69–87. Google Scholar

  • [6] Freeland J.R., Kirk H. & Peterson S.D. 2011. Molecular Ecology, 2nd ed., Wiley-Blackwell, UK, 449 pp. Google Scholar

  • [7] Fu Y.B. 2006. Redundancy and distinctness in flax germplasm as revealed by RAPD dissimilarity. Plant Genet. Resour. 4: 117–124. http://dx.doi.org/10.1079/PGR2005106CrossrefGoogle Scholar

  • [8] Fu Y.B. & Allaby R.G. 2010. Phylogenetic network of Linum species as revealed by non-coding chloroplast DNA sequences. Genet. Resour. Crop Evol. 57: 667–677. http://dx.doi.org/10.1007/s10722-009-9502-7CrossrefGoogle Scholar

  • [9] Fu Y.B., Diederichsen A. & Allaby R. 2012. Locus-specific view of flax domestication history. Ecol. Evol. 2: 139–152. http://dx.doi.org/10.1002/ece3.57CrossrefGoogle Scholar

  • [10] Gill K.S. 1987. Linseed. Indian Council of Agricultural Research, New Delhi, India Google Scholar

  • [11] Hamer Ř., Harper D.A.T. & Ryan P.D. 2012. PAST: Paleontological Statistics software package for education and data analysis. Paleontol. Electronica 4: 9. Google Scholar

  • [12] Hemmati Sh. 2007. Biosynthesis of lignans in plant species of the section Linum: pinoresinol-lariciresinol reductase and justicidin B 7-hydroxylase. Ph. D. Thesis, Faculty of Mathematics and Natural Sciences, Heinrich-Heine University, Düsseldorf, Germany. Google Scholar

  • [13] Križman M., Jakse J., Baricevic D., Javornik B. & Prošek M. 2006. Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta Agri. Slov. 87: 427–433. Google Scholar

  • [14] Maxted N., Ford-Lloyd B.V., Kell S.P., Iriondo J.M., Dulloo M.E. & Turok J. 2008. Crop Wild Relative Conservation and Use, CABI Publishing Series, Oxfordshire 720 pp. Google Scholar

  • [15] McDill J.R. 2009. Molecular phylogenetic studies in the Linaceae and Linum, with implications for their systematics and historical biogeography. Doct. dissert., University of Texas at Austin. Available electronically from http://hdl.handle.net/2152/ETD-UT-2009-12-657. Google Scholar

  • [16] Muir A.D. & Westcott N.D. (eds) 2003. Flax: The genus Linum. Taylor and Francis Inc., London, UK and NY, USA, 307 pages. Google Scholar

  • [17] Nicholls M.S. 1986. Variation and evolution in Linum tenuifolium (Linaceae). Plant Syst. Evol. 153: 243–258. http://dx.doi.org/10.1007/BF00983691CrossrefGoogle Scholar

  • [18] Ockendon D.J. 1968. Biosystematic studies in Linum perenne group. New Phytol. 67: 787–813. http://dx.doi.org/10.1111/j.1469-8137.1968.tb06396.xCrossrefGoogle Scholar

  • [19] Ockendon D.J. & Walters S.M. 1968. Linum. In: Tutin T.G., Heywood V. H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M. & Webb D.A. (eds), Flora Europaea, Cambridge University Press, Cambridge, vol. 2, pp. 206–211. Google Scholar

  • [20] Pritchard J.K., Stephens M. & Donnelly P. 2000. Inference of population structure using multilocus genotype Data. Genetics 155: 945–959. Web of ScienceGoogle Scholar

  • [21] Podani J. 2000. Introduction to the Exploration of Multivariate Data, Backhuyes, Leide Ltd. Google Scholar

  • [22] Rogers C.M. 1982. The Systematics of Linum sect. Linopsis (Linaceae). Pl. Syst. Evol. 140: 225–234. http://dx.doi.org/10.1007/BF02407299CrossrefGoogle Scholar

  • [23] Rogers C.M. 2008. A revision of the genus Linum in southern Africa. Nordic J. Bot. 1: 711–722. http://dx.doi.org/10.1111/j.1756-1051.1981.tb01157.xCrossrefGoogle Scholar

  • [24] Schmidt T.J., Hemmati S., Klaes M., Konuklugil B., Mohagheghzadeh A., Ionkova I., Fuss E. & Wilhelm Alfermann A. 2010. Lignans in flowering aerial parts of Linum species. Chemodiversity in the light of systematics and phylogeny. Phytochem. 71: 1714–28. doi: 10.1016/j.phytochem.2010.06.015. CrossrefWeb of ScienceGoogle Scholar

  • [25] Seetharam A. 1972. Interspecific hybridization in Linum. Euphytica 21: 489–495. http://dx.doi.org/10.1007/BF00039344CrossrefGoogle Scholar

  • [26] Seidel V., Windhövel J., Eaton G., Alfermann A.W., Arroo R.R., Medarde M., Petersen M. & Woolley J.G. 2002. Biosynthesis of podophyllotoxin in Linum album cell cultures. Planta 215: 1031–1039. http://dx.doi.org/10.1007/s00425-002-0834-1CrossrefGoogle Scholar

  • [27] Semenova O.Y., Khotyuleva L.V. & Zelenin A.V. 2003. Genome comparisons with chromosomal and molecular markers for three closely related flax species and their hybrids. Russian J. Genet. 39: 414–421. http://dx.doi.org/10.1023/A:1023309831454CrossrefGoogle Scholar

  • [28] Sharifnia F. & Albouyeh R.M. 2002. Anatomical studies in relation to taxonomy of Persian Linum species. Pakistan J. Biol. Sci. 5: 1240–1245. http://dx.doi.org/10.3923/pjbs.2002.1240.1245CrossrefGoogle Scholar

  • [29] Sharifnia F. & Assadi M. 2001. Flora of Iran, No. 34: Linaceae. Research Inst. Forests and Rangelands, Ministry of Jahad-e-Sazandegi, Iran (in Farsi). Google Scholar

  • [30] Soto-Cerda B.J., Saavedra H.U., Navarro C.N. & Ortega P.M. 2011. Characterization of novel genic SSR markers in Linum usitatissimum (L.) and their transferability across eleven Linum species. Plant Biotech. 14: 0717–3458. Google Scholar

  • [31] Uysal H., Fu Y.B., Kurt O., Peterson G.W., Diederichsen A. & Kusters P. 2010. Genetic diversity of cultivated flax (Linum usitatissimum L.) and its wild progenitor pale flax (Linum bienne Mill.) as revealed by ISSR markers. Genetic Crop Evol. 57: 1109–1119. http://dx.doi.org/10.1007/s10722-010-9551-yCrossrefWeb of ScienceGoogle Scholar

  • [32] Velasco L. & Goffman F.D. 2000. Tocopherol, plastochromanol and fatty acid patterns in the genus Linum. Plant Syst. Evol. 221: 77–88. http://dx.doi.org/10.1007/BF01086382CrossrefGoogle Scholar

  • [33] Vromans J. 2006. Molecular genetic studies in flax (Linum usitatissimum L.). PhD thesis, Wageningen University, The Netherlands. Google Scholar

  • [34] Weising K., Nybom H., Wolff K. & Kahl G. 2005. DNA Fingerprinting in Plants. Principles, Methods, and Applications (2nd ed.), Taylor & Francis, 444 pp. http://dx.doi.org/10.1201/9781420040043CrossrefGoogle Scholar

  • [35] Wiesnerová D. & Wiesner I. 2004. ISSR-based clustering of cultivated flax germplasm is statistically correlated to thousand seed mass. Mol. Biotech. 26: 207–214. http://dx.doi.org/10.1385/MB:26:3:207CrossrefGoogle Scholar

  • [36] Wilson I.J. & Balding D.J. 1998. Genealogical inference from microsatellite data. Genetics 150: 499–510. Google Scholar

  • [37] Yokoya K., Roberts A.V., Mottley J., Lewis R. & Brandham P.E. 2000. Nuclear DNA amounts in Roses. Ann. Bot. 85: 557–561. http://dx.doi.org/10.1006/anbo.1999.1102CrossrefGoogle Scholar

About the article

Published Online: 2013-11-15

Published in Print: 2014-01-01


Citation Information: Biologia, Volume 69, Issue 1, Pages 32–39, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-013-0281-4.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
S. Esfandani-Bozchaloyi, M. Sheidai, M. Keshavarzi, and Z. Noormohammadi
Cytology and Genetics, 2018, Volume 52, Number 4, Page 309
[2]
H. Azizi, M. Sheidai, V. Mozaffarian, and Z. Noormohammadi
Cytology and Genetics, 2018, Volume 52, Number 1, Page 75
[3]
Sormeh Poortavakoli, Masoud Sheidai, Omran Alishah, and Zahra Noormohammadi
The Nucleus, 2017, Volume 60, Number 1, Page 57
[4]
Amir Abbas Minaeifar, Masoud Sheidai, Farideh Attar, Zahra Noormohammadi, and Somayeh Ghasemzadeh-Baraki
Biochemical Systematics and Ecology, 2016, Volume 69, Page 252
[5]
Rosa Eftekharian, Masoud Sheidai, Farideh Attar, Zahra Noormohammadi, and Mostafa Ebadi-Nahari
The Nucleus, 2017, Volume 60, Number 1, Page 43
[7]
Hadi Habibollahi, Zahra Noormohammadi, Masoud Sheidai, and Farah Farahani
Genetic Resources and Crop Evolution, 2016, Volume 63, Number 7, Page 1127
[8]
V. A. Lemesh, T. E. Samatadze, E. V. Guzenko, E. V. Zheleznyakova, A. V. Amosova, A. V. Zelenin, and O. V. Muravenko
Russian Journal of Developmental Biology, 2014, Volume 45, Number 6, Page 337
[9]
Masoud Sheidai, Fatima Afshar, Maryam Keshavarzi, Seyed-Mehdi Talebi, Zahra Noormohammadi, and Tina Shafaf
Biochemical Systematics and Ecology, 2014, Volume 57, Page 20

Comments (0)

Please log in or register to comment.
Log in