Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 69, Issue 1


Discrimination between four Simocephalus species from Slovakia using a PCR-RFLP technique

Jan Kohout
  • Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506, Bratislava, Slovakia
  • Faculty of Fisheries and Protection of Waters, University of South Bohemia, Zátiší 728/II, 38925, Vodňany, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Illyová / Fedor Čiampor / Zuzana Čiamporová-Zaťovičová
Published Online: 2013-11-15 | DOI: https://doi.org/10.2478/s11756-013-0285-0


Planktonic crustaceans are traditionally identified based on morphological and morphometric characters. However, such characters may be hardly distinguishable and often overlap between species. A probability of misidentification is thus relatively high. Molecular techniques may increase the accuracy of identification if appropriate markers are used. Aim of our work was to develop a simple molecular procedure enabling discrimination between four species of Simocephalus occurring in Europe. PCR-RFLP technique proved to be suitable for such discrimination. Within the 709 bp fragment of mitochondrial cytochrome c oxidase subunit 1 gene we found unique combinations of restriction sites of the BbsI and SacI enzymes for Simocephalus vetulus, S. exspinosus, S. serrulatus and S. congener. PCR products of samples from several locations in Slovakia were digested with the two enzymes and electrophoresed on an agarose gel. The restriction patterns were clearly visible and easily distinguishable. This method is applicable for identifying the four species in any life-stage. Considering its simplicity and cost-effectiveness it can be widely used as a diagnostic tool for discriminating between Simocephalus species with overlapping morphologic characters.

Keywords: cytochrome oxidase I; Anomopoda; species identification; restriction fragment length polymorphism; Cladocera

  • [1] Ahmed A.O.A., Mukhtar M.M., Kools-Sijmons M., Fahal A.H., de Hoog S., van den Ende G.B., Zijlstra E.E., Verbrugh H., Abughroun E.S.A.M., Elhassan A.M. & van Belkum A. 1999. Development of a species-specific PCR-restriction fragment length polymorphism analysis procedure for identification of Madurella mycetomatis. J. Clin. Microbiol. 37: 3175–3178. PMID: 85521 Google Scholar

  • [2] Folmer O., Black M., Hoeh W., Lutz R. & Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 3: 294–299. PMID: 7881515 Google Scholar

  • [3] Gajardo G., Crespo J., Triantafyllidis A., Tzika A., Baxevanis A.D., Kappas I. & Abatzopoulos T.J. 2004. Species identi-fication of Chilean Artemia populations based on mitochondrial DNA RFLP analysis. J. Biogeogr. 31: 547–555. DOI: 10.1111/j.1365-2699.2003.01046.x http://dx.doi.org/10.1111/j.1365-2699.2003.01046.xCrossrefGoogle Scholar

  • [4] Galan M., Pagès M. & Cosson J.-F. 2012. Next-generation sequencing for rodent barcoding: species identification from fresh, degraded and environmental samples. PLoS ONE 7(11): e48374. DOI: 10.1371/journal.pone.0048374 http://dx.doi.org/10.1371/journal.pone.0048374CrossrefGoogle Scholar

  • [5] Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. 41: 95–98. Google Scholar

  • [6] Hann B.J. 1987. Naturally occurring interspecific hybridization in Simocephalus (Cladocera, Daphniidae): its potential significance. Hydrobiologia 145: 219–224. DOI: 10.1007/BF02530283 http://dx.doi.org/10.1007/BF02530283CrossrefGoogle Scholar

  • [7] Hann B.J. 1995. Genetic variation in Simocephalus (Anomopoda: Daphniidae) in North America: patterns and consequences. Hydrobiologia 307: 9–14. DOI: 10.1007/BF00031992 http://dx.doi.org/10.1007/BF00031992CrossrefGoogle Scholar

  • [8] Hebert P.D.N. 1985. Interspecific hybridization between cyclic parthenogens. Evolution 39: 216–220. DOI: 10.2307/2408534 http://dx.doi.org/10.2307/2408534CrossrefGoogle Scholar

  • [9] Hebert P.D.N., Cywinska A., Ball S.L. & deWaard J.R. 2003a. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270: 313–322. DOI: 10.1098/rspb.2002.2218 http://dx.doi.org/10.1098/rspb.2002.2218CrossrefGoogle Scholar

  • [10] Hebert P.D.N., Ratnasingham S. & deWaard J.R. 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B 270(Suppl. 1): S96–S99. DOI: 10.1098/rsbl.2003.0025 http://dx.doi.org/10.1098/rsbl.2003.0025Google Scholar

  • [11] Hudec I. 1993. Notes to the distribution of the genus Simocephalus (Crustacea: Daphniiformes, Daphniidae) in Slovakia. Biologia 48: 141–147. Google Scholar

  • [12] Hudec I. 1995. Variability of Simocephalus vetulus (Crustacea: Anomopoda, Daphniidae) in Slovakia. Biologia 50: 465–473. Google Scholar

  • [13] Ingaki Y., Ehara M., Watanabe K.I., Hayashi-Ishimaru Y. & Ohama, T. 1998. Directionally evolving genetic code: the UGA codon from stop to tryptophan in mitochondria. J. Mol. Evol. 47: 378–384. PMID: 9767683 http://dx.doi.org/10.1007/PL00006395Google Scholar

  • [14] Johns G.C. & Avise J.C. 1998. A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol. Biol. Evol. 15: 1481–1490. PMID: 12572611 http://dx.doi.org/10.1093/oxfordjournals.molbev.a025875Google Scholar

  • [15] Kalous L., ŠlechtovČech M. 2010. Do small fish mean no voucher? Using a flatbed desktop scanner to document larval and small specimens before destructive analyses. J. Appl. Ichthyol. 26: 614–617. DOI: 10.1111/j.1439-0426.2010.01471.x http://dx.doi.org/10.1111/j.1439-0426.2010.01471.xWeb of ScienceCrossrefGoogle Scholar

  • [16] Kohout J., Pekárik L., Šedivá A., Didenko A., Čiampor F. & Čiamporová-Zaťovičová Z. 2013. Discrimination between invasive Ponto-Caspian gobies using a PCR-RFLP method. J. Appl. Ichthyol., published online. DOI: 10.1111/jai.12315 CrossrefWeb of ScienceGoogle Scholar

  • [17] Kress W.J., Wurdack K.J., Zimmer E.A., Weigt L.A. & Janzen D.H. 2005. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. U.S.A. 102(23): 8369–8374. DOI: 10.1073/pnas.0503123102 http://dx.doi.org/10.1073/pnas.0503123102CrossrefGoogle Scholar

  • [18] Mirhendi H., Makimura K., Khoramizadeh M. & Yamaguchi H. 2006. A one-enzyme PCR-RFLP assay for identification of six medically important Candida species. Jpn. J. Med. Mycol. 47: 225–229. PMID: 16940958 http://dx.doi.org/10.3314/jjmm.47.225Google Scholar

  • [19] Orlova-Bienkowskaja M.Y. 2001. Cladocera: Anomopoda: Daphniidae: genus Simocephalus. In: Dumont H.J.F. (ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 17, SBA Acad. Publ. Hague, 130 pp. ISBN-10: 9057820900 Google Scholar

  • [20] Schwenk K. 1993. Interspecific hybridization in Daphnia: Distinction and origin of hybrid matrilines. Mol. Biol. Evol. 10: 1289–1302. PMID: 8277855 Google Scholar

  • [21] Širca S., Geric Stare B., Strajnar P. & Urek G. 2010. PCR-RFLP diagnostic method for identifying Globodera species in Slovenia. Phytopathol. Mediterr. 49: 361–369. Google Scholar

  • [22] Šrámek-Hušek R. 1962. Cladocera — perloočky, pp. 174–410. In: Šrámek-Hušek R., Straškraba M. & Brtek J. (eds), Lupenonožci — Branchiopoda, Fauna ČSSR 16, NČSAV, Praha. Google Scholar

  • [23] Traub R.J., Robertson I.D., Irwin P., Mencke N. & Thompson A. 2004. Application of a species-specific PCR-RFLP to identify Ancylostoma eggs directly from canine faeces. Vet. Parasitol. 123: 245–255. DOI: 10.1016/j.vetpar.2004.05.026 http://dx.doi.org/10.1016/j.vetpar.2004.05.026CrossrefGoogle Scholar

  • [24] Young Sh-S., Ni M.-H. & Liu M.-Y. 2012. Systematic study of the Simocephalus sensu stricto species group (Cladocera: Daphniidae) from Taiwan by morphometric and molecular analyses. Zool. Stud. 51(2): 222–231. Google Scholar

  • [25] Zapata M.A., Cienfuegos A.V., Quirós O.I., Quińones M.L., Luckhaart S. & Correa M.M. 2007. Discrimination of seven Anopheles species from San Pedro de Urabá, Antioquia, Colombia, by polymerase chain reaction-restriction fragment length polymorphism analysis of its sequences. Am. J. Trop. Med. Hyg. 77(1): 67–72. PMID: 17620632 Google Scholar

  • [26] Zaret T. 1969. Predation-balanced polymorphism of Ceriodaphnia cornuta Sars. Limnol. Oceanogr. 14: 301–303. DOI: 10.4319/lo.1969.14.2.0301 http://dx.doi.org/10.4319/lo.1969.14.2.0301CrossrefGoogle Scholar

About the article

Published Online: 2013-11-15

Published in Print: 2014-01-01

Citation Information: Biologia, Volume 69, Issue 1, Pages 76–79, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-013-0285-0.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xiaona Huang, Xinlu Shi, Alexey A. Kotov, Fukang Gu, and Donald James Colgan
PLoS ONE, 2014, Volume 9, Number 11, Page e112808

Comments (0)

Please log in or register to comment.
Log in