Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 1

Issues

Expression patterns of Nlrp9a, Nlrp9b and Nlrp9c during mouse development

Hui Peng
  • College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
  • College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wenchang Zhang / Tianfang Xiao / Yong Zhang
Published Online: 2013-11-15 | DOI: https://doi.org/10.2478/s11756-013-0287-y

Abstract

The Nlrp gene family contains 20 members in the mouse. Recent studies have demonstrated that these genes play key roles in reproduction. In this study, we investigated the expression patterns of Nlrp9a, Nlrp9b and Nlrp9c in the mouse. In 2-week-old mouse tissues, Nlrp9a, Nlrp9b and Nlrp9c were all strikingly expressed in the ovary, while the transcripts of Nlrp9b and Nlrp9c were also detected in other tissues. The transcripts of Nlrp9a, Nlrp9b and Nlrp9c were restricted to the oocytes and declined with oocyte aging within the ovary. Furthermore, Nlrp9a, Nlrp9b and Nlrp9c transcripts presented evidence for the exclusive maternal origin, which were presented in oocytes and zygotes, immediately downregulated and not detected after the 2-cell stage during preimplantation development. In addition, Nlrp9a and Nlrp9c transcripts were not detected in other cells except for oocytes. Nevertheless, Nlrp9b expression was detected in oocytes, as well as in D3 ES and F9 ES. These results indicate that Nlrp9a, Nlrp9b and Nlrp9c display specific or preferential oocyte expression patterns and may play critical role in oogenesis and/or preimplantation embryo development in the mouse.

Keywords: Expression analysis; Nlrp9a; Nlrp9b; Nlrp9c; mouse

  • [1] Aoki F., Worrad D.M. & Schultz R.M. 1997. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181(2): 296–307. DOI: 10.1006/dbio.1996.8466 http://dx.doi.org/10.1006/dbio.1996.8466CrossrefGoogle Scholar

  • [2] Biggers J.D., McGinnis L.K. & Raffin M. 2000. Amino acids and preimplantation development of the mouse in proteinfree potassium simplex optimized medium. Biol. Reprod. 63(1): 281–293. DOI: 10.1095/biolreprod63.1.281 http://dx.doi.org/10.1095/biolreprod63.1.281CrossrefGoogle Scholar

  • [3] Brandt S. 2010. TERT over-expression affects the growth of myocardial tissue derived from mouse embryonic stem cells. Differentiation 79(1): 1–8. DOI: 10.1016/j.diff.2009.09.003 http://dx.doi.org/10.1016/j.diff.2009.09.003CrossrefWeb of ScienceGoogle Scholar

  • [4] Cho H.Y., Choi E.K., Lee S.W., Jung K.O., Seo S.K., Choi I.W., Park S.G. & Choi I. 2009. Programmed death-1 receptor negatively regulates LPS-mediated IL-12 production and differentiation of murine macrophage RAW264.7 cells. Immunol. Lett. 127(1): 39–47. DOI: 10.1016/j.imlet.2009.08.011 http://dx.doi.org/10.1016/j.imlet.2009.08.011Google Scholar

  • [5] Dade S., Callebaut I., Paillisson A., Bontoux M., Dalbies-Tran R. & Monget P. 2004. In silico identification and structural features of six new genes similar to MATER specifically expressed in the oocyte. Biochem. Biophys. Res. Commun. 324(2): 547–553. DOI: 10.1016/j.bbrc.2004.09.086 http://dx.doi.org/10.1016/j.bbrc.2004.09.086CrossrefGoogle Scholar

  • [6] Dalbies-Tran R., Papillier P., Pennetier S., Uzbekova S. & Monget P. 2005. Bovine mater-like NALP9 is an oocyte marker gene. Mol. Reprod. Dev. 71(4): 414–421. DOI: 10.1002/mrd.20298 http://dx.doi.org/10.1002/mrd.20298CrossrefGoogle Scholar

  • [7] Dean J. 2002. Oocyte-specific genes regulate follicle formation, fertility and early mouse development. J. Reprod. Immunol. 53(1–2): 171–180. DOI: 10.1016/S0165-0378(01)00 100-0 http://dx.doi.org/10.1016/S0165-0378(01)00100-0CrossrefGoogle Scholar

  • [8] Dharma S.J., Modi D.N. & Nandedkar T.D. 2009. Gene expression profiling during early folliculogenesis in the mouse ovary. Fertil. Steril. 91(5): 2025–2036. DOI: 10.1016/j.fertnstert.2008.02.088 http://dx.doi.org/10.1016/j.fertnstert.2008.02.088Web of ScienceCrossrefGoogle Scholar

  • [9] Estes K.C., Rose B.T., Speck J.J., Nutter M.L. & Reitz R.C. 1997. Effects of omega 3 fatty acids on receptor tyrosine kinase and PLC activities in EMT6 cells. J. Lipid Mediat. Cell. Signal. 17(2): 81–96. DOI: 10.1016/S0929-7855(97)00022-9 http://dx.doi.org/10.1016/S0929-7855(97)00022-9CrossrefGoogle Scholar

  • [10] Evsikov A.V., Graber J.H., Brockman J.M., Hampl A., Holbrook A.E., Singh P., Eppig J.J., Solter D. & Knowles B.B. 2006. Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes. Dev. 20(19): 2713–2727. DOI: 10.1101/gad.1471006 http://dx.doi.org/10.1101/gad.1471006CrossrefGoogle Scholar

  • [11] Hamatani T., Falco G., Carter M.G., Akutsu H., Stagg C.A., Sharov A.A., Dudekula D.B., VanBuren V. & Ko M.S. 2004. Age-associated alteration of gene expression patterns in mouse oocytes. Hum. Mol. Genet. 13(19): 2263–2278. DOI: 10.1093/hmg/ddh241 http://dx.doi.org/10.1093/hmg/ddh241CrossrefGoogle Scholar

  • [12] Ko M.S., Kitchen J.R., Wang X., Threat T.A., Hasegawa A., Sun T., Grahovac M.J., Kargul G.J., Lim M.K., Cui Y., Sano Y., Tanaka T., Liang Y., Mason S., Paonessa P.D., Sauls A.D., DePalma G.E., Sharara R., Rowe L.B., Eppig J., Morrell C. & Doi H. 2000. Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development. Development 127(8): 1737–1749. Google Scholar

  • [13] Latham K.E. 1999. Mechanisms and control of embryonic genome activation in mammalian embryos. Int. Rev. Cytol. 193: 71–124. http://dx.doi.org/10.1016/S0074-7696(08)61779-9Google Scholar

  • [14] Latham K.E. & Schultz R.M. 2001. Embryonic genome activation. Front. Biosci. 6: D748–759. DOI: 10.2741/Latham http://dx.doi.org/10.2741/LathamCrossrefGoogle Scholar

  • [15] Li L., Baibakov B. & Dean J. 2008. A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev. Cell. 15(3): 416–425. DOI: 10.1016/j.devcel.2008.07.010 http://dx.doi.org/10.1016/j.devcel.2008.07.010CrossrefWeb of SciencePubMedGoogle Scholar

  • [16] Livak K.J. & Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4): 402–408. DOI: 10.1006/meth.2001.1262 http://dx.doi.org/10.1006/meth.2001.1262CrossrefGoogle Scholar

  • [17] Ma J., Zeng F., Schultz R.M. & Tseng H. 2006. Basonuclin: a novel mammalian maternal-effect gene. Development 133(10): 2053–2062. DOI: 10.1242/dev.02371 http://dx.doi.org/10.1242/dev.02371CrossrefGoogle Scholar

  • [18] McDaniel P. & Wu X. 2009. Identification of oocyte-selective NLRP genes in rhesus macaque monkeys (Macaca mulatta). Mol. Reprod. Dev. 76(2): 151–159. DOI: 10.1002/mrd.20937 http://dx.doi.org/10.1002/mrd.20937CrossrefWeb of ScienceGoogle Scholar

  • [19] Ohsugi M., Zheng P., Baibakov B., Li L. & Dean J. 2008. Maternally derived FILIA-MATER complex localizes asymmetrically in cleavage-stage mouse embryos. Development 135(2): 259–269. DOI: 10.1242/dev.011445 http://dx.doi.org/10.1242/dev.011445CrossrefWeb of ScienceGoogle Scholar

  • [20] Paillisson A., Dade S., Callebaut I., Bontoux M., Dalbies-Tran R., Vaiman D. & Monget P. 2005. Identification, characterization and metagenome analysis of oocyte-specific genes organized in clusters in the mouse genome. BMC Genomics 6: 76. DOI: 10.1186/1471-2164-6-76 http://dx.doi.org/10.1186/1471-2164-6-76CrossrefGoogle Scholar

  • [21] Peng H., Chang B., Lu C., Su J., Wu Y., Lv P., Wang Y., Liu J., Zhang B., Quan F., Guo Z. & Zhang Y. 2012. Nlrp2, a maternal effect gene required for early embryonic development in the mouse. PLoS One. 7(1): e30344. DOI: 10.1371/journal.pone.0030344 http://dx.doi.org/10.1371/journal.pone.0030344CrossrefGoogle Scholar

  • [22] Ponsuksili, S., Brunner R.M., Goldammer T., Kuhn C., Walz C., Chomdej S., Tesfaye D., Schellander K., Wimmers K. & Schwerin M. 2006. Bovine NALP5, NALP8, and NALP9 genes: assignment to a QTL region and the expression in adult tissues, oocytes, and preimplantation embryos. Biol. Reprod. 74(3): 577–584. DOI: 10.1095/biolreprod.105.045096 http://dx.doi.org/10.1095/biolreprod.105.045096CrossrefGoogle Scholar

  • [23] Schultz R.M. 1993. Regulation of zygotic gene activation in the mouse. Bioessays 15(8): 531–538. DOI: 10.1002/bies.950150 806 http://dx.doi.org/10.1002/bies.950150806CrossrefGoogle Scholar

  • [24] Schultz R.M. 2002. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum. Reprod. Update 8(4): 323–331. DOI: 10.1093/humupd/8.4.323 http://dx.doi.org/10.1093/humupd/8.4.323CrossrefGoogle Scholar

  • [25] Thompson J.R. & Gudas L.J. 2002. Retinoic acid induces parietal endoderm but not primitive endoderm and visceral endoderm differentiation in F9 teratocarcinoma stem cells with a targeted deletion of the Rex-1 (Zfp-42) gene. Mol. Cell. Endocrinol. 195(1–2): 119–133. DOI: 10.1016/S0303-7207(02) http://dx.doi.org/10.1016/S0303-7207(02)00180-6CrossrefGoogle Scholar

  • [26] Tian X., Pascal G. & Monget P. 2009. Evolution and functional divergence of NLRP genes in mammalian reproductive systems. BMC Evol. Biol. 9: 202. DOI: 10.1186/1471-2148-9-202 http://dx.doi.org/10.1186/1471-2148-9-202CrossrefGoogle Scholar

  • [27] Tong Z.B., Gold L., De Pol A., Vanevski K., Dorward H., Sena P., Palumbo C., Bondy C.A. & Nelson L.M. 2004. Developmental expression and subcellular localization of mouse MATER, an ocyte-specific protein essential for early development. Endocrinology 145(3): 1427–1434. DOI: 10.1210/en.2003-031160 http://dx.doi.org/10.1210/en.2003-1160CrossrefGoogle Scholar

  • [28] Tong Z.B., Gold L., Pfeifer K.E., Dorward H., Lee E., Bondy C.A., Dean J. & Nelson L.M. 2000a. Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 26(3): 267–268. http://dx.doi.org/10.1038/81547Google Scholar

  • [29] Tong Z.B. & Nelson L.M. 1999. A mouse gene encoding an oocyte antigen associated with autoimmune premature ovarian failure. Endocrinology 140(8): 3720–3726. DOI: 10.1210/en.140.8.3720 http://dx.doi.org/10.1210/en.140.8.3720CrossrefGoogle Scholar

  • [30] Tong Z.B., Nelson L.M. & Dean J. 2000b. Mater encodes a maternal protein in mice with a leucine-rich repeat domain homologous to porcine ribonuclease inhibitor. Mamm. Genome 11(4): 281–287. DOI: 10.1007/s003350010053 http://dx.doi.org/10.1007/s003350010053CrossrefGoogle Scholar

  • [31] Wang H., Ding T., Brown N., Yamamoto Y., Prince L.S., Reese J. & Paria B.C. 2008. Zonula occludens-1 (ZO-1) is involved in morula to blastocyst transformation in the mouse. Dev. Biol. 318(1): 112–125. DOI: 10.1016/j.ydbio.2008.03.008 http://dx.doi.org/10.1016/j.ydbio.2008.03.008CrossrefWeb of ScienceGoogle Scholar

  • [32] Wang Q.T., Piotrowska K., Ciemerych M.A., Milenkovic L., Scott M.P., Davis R.W. & Zernicka-Goetz M. 2004. A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell. 6(1): 133–144. DOI: 10.1016/S1534-5807(03)00404-0 http://dx.doi.org/10.1016/S1534-5807(03)00404-0CrossrefGoogle Scholar

  • [33] Wu X., Viveiros M.M., Eppig J.J., Bai Y., Fitzpatrick S.L. & Matzuk M.M. 2003. Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat. Genet. 33(2): 187–191. DOI: 10.1038/ng1079 http://dx.doi.org/10.1038/ng1079CrossrefGoogle Scholar

  • [34] Yoon S.J., Kim K.H., Chung H.M., Choi D.H., Lee W.S., Cha K.Y. & Lee K.A. 2006. Gene expression profiling of early follicular development in primordial, primary, and secondary follicles. Fertil. Steril. 85(1): 193–203. DOI: 10.1016/j.fertnstert.2005.07.1296 http://dx.doi.org/10.1016/j.fertnstert.2005.07.1296CrossrefGoogle Scholar

  • [35] Zhang P., Dixon M., Zucchelli M., Hambiliki F., Levkov L., Hovatta O. & Kere J. 2008. Expression analysis of the NLRP gene family suggests a role in human preimplantation development. PLoS One. 3(7): e2755. DOI: 10.1371/journal.pone.0002755 http://dx.doi.org/10.1371/journal.pone.0002755CrossrefGoogle Scholar

About the article

Published Online: 2013-11-15

Published in Print: 2014-01-01


Citation Information: Biologia, Volume 69, Issue 1, Pages 107–112, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-013-0287-y.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
[2]
Hui PENG, Xiujiao LIN, Fang LIU, Cheng WANG, and Wenchang ZHANG
Journal of Reproduction and Development, 2015, Volume 61, Number 6, Page 559
[3]
Hanne Van Gorp, Anna Kuchmiy, Filip Van Hauwermeiren, and Mohamed Lamkanfi
FEBS Journal, 2014, Volume 281, Number 20, Page 4568

Comments (0)

Please log in or register to comment.
Log in