Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 1

Issues

Seasonal and spatial distribution of mesozooplankton in a tropical estuary, Nha Phu, South Central Viet Nam

Trinh Truong / Cho Nguyen / Nguyen-Ngoc Lam / K. Jensen
Published Online: 2013-11-15 | DOI: https://doi.org/10.2478/s11756-013-0289-9

Abstract

This study provides a description of mesozooplankton (holo- and meroplankton) abundance, biomass and diversity patterns inside and outside a tropical estuary (Nha Phu Estuary, Khanh Hoa, Viet Nam). In total 185 zooplankton species have been recorded during the study period (2009–2010), copepods contribute with the largest share of species (more than 100), Tunicata with 20, Cnidaria with 17 and Chaetognatha with 9 species. At the most species rich site the number of zooplankton species varies between 55 and 123. The number of species and the annual variation in numbers declines towards the head of the estuary (14–37 species). In contrast, the highest numbers of individuals occur in the inner part of NPE. Calanoids that are the most abundant group of the copepods occur in densities up to 28.2 ind. L−1 (Aug. 9). At ‘Outer NPE’ and ‘Outside NPE’ the maximum density of calanoids is 5.8 and 10.7 ind. L−1, respectively. The declining diversity of zooplankton towards the head of the estuary is also supported by various indices (Shannon’s index, Margalef’s index). A cluster analysis on similarity of species supports a clustering of the inner NPE sites vs the other sites. There is a general separation between the dominant copepod species in the inner (Bestiola sp., Acartia pacifica, Pseudodiaptomus incisus) and outer (Paracalanus gracilis, Acrocalanus gibber, Subeucalanus subcrassus, Oithona rigida, Corycaeus andrewsi, Oithona plumifera) part of the estuary though a few species are common in both areas (Paracalanus crassirostris and Euterpina acutifrons). The zooplankton community at the inner NPE is subjected to more variable hydrographic conditions (salinity in particular) than the communities at the other sites where more stable conditions prevail. A short residence time in the inner part of the estuary due to the tide is supposed to impede a strong horizontal structuring of the zooplankton community.

Keywords: abundance; biomass; mesozooplankton; tropical ria; Nha Phu Estuary

  • [1] Alongi D.M. 2002. Present state and future of the world’s mangrove forests. Environ. Cons. 29(3): 331–349. DOI: 10.1017/S0376892902000231 http://dx.doi.org/10.1017/S0376892902000231CrossrefGoogle Scholar

  • [2] Beyrend-Dur D., Kumar R., Rao T.R., Souissi S., Cheng S.H. & Hwang J.S. 2011. Demographic parameters of adults of Psedodiaptomus annandalei (Copepoda: Calanoida): Temperature-salinity and generation effects. J. Exp. Mar. Biol. Ecol. 404(1–2): 1–14. DOI: http://dx.doi.org/10.1016/j.jembe.2011.04.012 http://dx.doi.org/10.1016/j.jembe.2011.04.012Google Scholar

  • [3] Boltovskoy D. (ed.) 1999. South Atlantic Zooplankton. Backhuys Publishers, Leiden, 1706 pp. ISBN: 90-5782-035-8 Google Scholar

  • [4] Bray J.R. & Curtis J.T. 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27(4): 325–349. DOI: http://dx.doi.org/10.2307/1942268 http://www.geobotany.org/teaching/biol474/journals/Bray1957v27n4.pdf http://dx.doi.org/10.2307/1942268Google Scholar

  • [5] Calliari D., Britos A. & Conde D. 2009. Testing the relationship between primary production and Acartia tonsa grazing pressure in an estuarine lagoon. J. Plankton Res. 31(9): 1045–1058. DOI: 10.1093/plankt/fbp049 http://dx.doi.org/10.1093/plankt/fbp049Web of ScienceCrossrefGoogle Scholar

  • [6] Camus T., Zeng C. & McKinnon D. 2009. Egg production, egg hatching success and population increase of the tropical paracalanid copepod, Bestiolina similis (Calanoida: Paracalanidae) fed different microalgal diets. Aquaculture 297(1–4): 169–175. DOI: 10.1016/j.aquaculture.2009.09.018 http://dx.doi.org/10.1016/j.aquaculture.2009.09.018Web of ScienceCrossrefGoogle Scholar

  • [7] Chen Q.C. & Zhang S.Z. 1965. The planktonic copepods of the Yellow Sea and the East China Sea, I. Calanoida. Stud. Mar. Sin. 7: 20–131, plates: 1–52. [in Chinese with English summary] Google Scholar

  • [8] Chen Q.C., Zhang S.Z. & Zhu C.S. 1974. On planktonic copepods of the Yellow Sea and the East China Sea, II. Cyclopoida and Harpacticoida. Stud. Mar. Sin. 9: 27–76, plates: 1–24. [in Chinese with English summary] Google Scholar

  • [9] Chew L.L. & Chong V.C. 2011. Copepod community structure and abundance in a tropical mangrove estuary, with comparisons to coastal waters. Hydrobiologia 666(1): 127–143. DOI: 10.1007/s10750-010-0092-3 http://dx.doi.org/10.1007/s10750-010-0092-3CrossrefGoogle Scholar

  • [10] Constanzo S.D., O’Donohue M.J. & Dennison W.C. 2004. Assessing the influence and distribution of shrimp pond effluent in a tidal mangrove creek in north-east Australia. Mar. Poll. Bull. 48(5–6): 514–525. DOI: 10.1016/j.marpolbul.2003.09.006 http://dx.doi.org/10.1016/j.marpolbul.2003.09.006CrossrefGoogle Scholar

  • [11] Duggan S, McKinnon A.D. & Carleton J.H. 2008. Zooplankton in an Australian tropical estuary. Estuaries and Coasts: J. Cerf. 31(2): 455–467. DOI: 10.1007/s12237-007-9011-x http://dx.doi.org/10.1007/s12237-007-9011-xCrossrefGoogle Scholar

  • [12] Hopcroft R.R. & Roff J.C. 1996. Zooplankton growth rates: diel egg production in the copepods Oithona, Euterpina and Corycaeus from tropical waters. J. Plankton Res. 18(5): 789–803. DOI: 10.1093/plankt/18.5.789 http://dx.doi.org/10.1093/plankt/18.5.789CrossrefGoogle Scholar

  • [13] Jeffrey S.W. & Humphrey G.R. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167: 191–194. Google Scholar

  • [14] Johan I., Abu Hena M.K., Idris M.H. & Arshad A. 2013. Taxonomic composition and abundance of zooplankton Copepoda in the coastal waters of Bintulu, Sarawak, Malaysia. J. Fish. Aquat. Sci. 8(3): 472–479. DOI: 10.3923/jfas.2013.472.479 http://dx.doi.org/10.3923/jfas.2013.472.479CrossrefGoogle Scholar

  • [15] Johnson C.L., Runge J.A., Curtis K.A., Durbin E.G., Hare J.A., Incze L.S., Link J.S., Melvin G.D., O’Brien T.D. & Guelpen L.V. 2011. Biodiversity and ecosystem function in the Gulf of Maine: Pattern and role of zooplankton and pelagic nekton. PLoS ONE 6(1): e16491 DOI: 10.1371/journal.pone.0016491 http://dx.doi.org/10.1371/journal.pone.0016491CrossrefGoogle Scholar

  • [16] Lorenzen C.J. 1967. Determination of chlorophyll and pheopigments: spectrophtometric equations. Limnol. Oceanogr. 12(2): 343–346. DOI: 10.4319/lo.1967.12.2.0343 http://dx.doi.org/10.4319/lo.1967.12.2.0343CrossrefGoogle Scholar

  • [17] Lund-Hansen L.C., Hai D.N., Lam N.N. & Nielsen M.H. 2010. Optical properties of a tropical estuary during wet and dry conditions in the Nha Phu estuary, Khanh Hoa Province, south-east Vietnam. Hydrobiologia 644(1): 207–216. DOI: 10.1007/s10750-010-0114-1 http://dx.doi.org/10.1007/s10750-010-0114-1CrossrefWeb of ScienceGoogle Scholar

  • [18] Mauchline J. (ed.)1998. The Biology of Calanoid Copepods. Advances in Marine Biology. Vol. 33. Elsevier Academic Press, New York, 710 pp. ISBN: 978-0-12-026133-8 Google Scholar

  • [19] Margalef D.R. 1958. Information theory in ecology. General Systems Yearbook 3: 36–71. Google Scholar

  • [20] Nagelkerken I. (ed.) 2009 Ecological Connectivity Among Tropical Coastal Ecosystems. Springer Science and Business Media, Dordrecht, the Netherlands, 615 pp. ISBN: 978-90-481-2405-3 Google Scholar

  • [21] Nguyen C. & Truong-Si H.T. 2006. Zooplankton abundance and species diversity in Qui Nhon coastal waters, South Central Vietnam in June 2004. Coastal Marine Science 30(1): 328–335. Google Scholar

  • [22] Nguyen K.H., Kristensen E. & Lund-Hansen L.C. 2012. Benthic metabolism and nitrogen transformations affected by fish cage farming in the tropical Nha Phu estuary (Vietnam). Mar. Freshwater Res. 63(10): 887–897. DOI: 10.1071/MF12136 http://dx.doi.org/10.1071/MF12136Web of ScienceCrossrefGoogle Scholar

  • [23] Nguyen V.K. 1995. Copepods of the Tonkin Gulf. Science & Technical Publishing. House, Hanoi, Vietnam, 200 pp. [in Vietnamese] Google Scholar

  • [24] Nishida S. 1985. Taxonomy and distribution of the family Oithoinidae (Copepoda, Cyclopoda) in the Pacific and Indian Oceans. Bull. Ocean Res. Inst. Univ. Tokyo 20: 1–167. Google Scholar

  • [25] Owre H.B. & Foyo M. 1967. Copepods of the Florida Current, with Illustrated Keys to Genera and Species. Fauna Caribaea 1. Crustacea, Part 1, Copepoda. Institute of Marine Science, University of Miami, Miami, Florida, 137 pp. Google Scholar

  • [26] Páez-Osuna F. 2001 The environmental impact of shrimp aquaculture: causes, effects and mitigating alternatives. Environ. Manage. 28(1): 131–140. DOI: 10.1007/s002670010212 http://dx.doi.org/10.1007/s002670010212Google Scholar

  • [27] Pielou E.C. 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13: 131–144. DOI: 10.1016/0022-5193(66)90013-0 http://dx.doi.org/10.1016/0022-5193(66)90013-0CrossrefGoogle Scholar

  • [28] Robertson A.I, Dixon P. & Daniel P.A. 1988. Zooplankton dynamics in mangrove and othernearshore habitats in tropical Australia. Mar. Ecol. Prog. Ser. 43: 139–150. http://dx.doi.org/10.3354/meps043139Google Scholar

  • [29] Rombouts I.B. 2010. A multivariate approach to large-scale variation in marine planktonic copepoddiversity and its environmental correlates. Limnol. Oceanogr. 55(5): 2219–2229. DOI: 10.4319/lo.2010.55.5.2219 http://dx.doi.org/10.4319/lo.2010.55.5.2219Web of ScienceCrossrefGoogle Scholar

  • [30] Shannon C.E. 1948. A mathematical theory of communication. The Bell System Technical Journal, 27(4): 379–423 DOI: 10.1002/j.1538-7305.1948.tb00917.x http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.xCrossrefGoogle Scholar

  • [31] Strehlow H.V. 2006. Integrated natural resources management of coastal fisheries. -The case of Nha Phu Lagoon, Vietnam-. Dissertation zur Erlangung des akademischen Grades doctor rerum agriculturarum (Dr. rer. agr.), 302 pp. Google Scholar

  • [32] Westergaard C. 2011. Fish community structure within a tropical estuary: stable isotopes and stomach content analyses (case: Nha Phu estuaary — South East Vietnam). Master Thesis, Aarhus University, 45 pp. Google Scholar

  • [33] Wiggert J.D. Haskell A.G.E., Paffenhöffer G.-A., Hofmann E.E. & Klinck J.M. 2005. The role of feeding behavior in sustaining copepod populations in the tropical ocean. J. Plankton Res. 27(10): 1013–1031. DOI: 10.1093/plankt/fbi090 http://dx.doi.org/10.1093/plankt/fbi090CrossrefGoogle Scholar

  • [34] Zurlini G., Ferrari I. & Nassogne A. 1978. Reproduction and growth of Euterpina acutifrons (Copepoda: Harpacticoida) under experimental Conditions. Mar. Biol. 46(1): 59–64. DOI: 10.1007/BF00393821 http://dx.doi.org/10.1007/BF00393821CrossrefGoogle Scholar

About the article

Published Online: 2013-11-15

Published in Print: 2014-01-01


Citation Information: Biologia, Volume 69, Issue 1, Pages 80–91, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-013-0289-9.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Lars Chresten Lund-Hansen, Kurt Thomas Jensen, Thorbjørn Joest Andersen, Morten Holtegaard Nielsen, Hai Doan-Nhu, and Lam Nguyen-Ngoc
Regional Studies in Marine Science, 2017

Comments (0)

Please log in or register to comment.
Log in