Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 1

Issues

Identification of critical amino acid residues for chloride binding of Bacillus licheniformis trehalose-6-phosphate hydrolase

Ping-Lin Ong
  • Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Road, Chiayi County, 60004, Taiwan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tzu-Ting Chuang
  • Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Road, Chiayi County, 60004, Taiwan
  • Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi County, 60004, Taiwan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tzu-Fan Wang / Long-Liu Lin
Published Online: 2013-11-15 | DOI: https://doi.org/10.2478/s11756-013-0290-3

Abstract

Based on sequence alignment of selected Cl− dependent and independent glycoside hydrolase family 13 enzymes, two invariant residues (Arg201 and Asn347) and one tyrosine (Tyr365) that might be responsible for the binding of Bacillus licheniformis trehalose-6-phosphate hydrolase (BlTreA) to chloride ion were identified. The role of these three residues was further explored by mutational and biophysical analyses. The mutant enzymes (R201Q/E/K, N327Q/D/K, and Y365A/R) and BlTreA were individually overexpressed in Escherichia coli M15 host cells and purified by one-step nickel affinity chromatography on Ni-NTA resin. The purified BlTreA and Y365A had a specific activity of 236.9 and 47.6 U/mg protein, respectively. The remaining enzymes lost their hydrolase activity completely even in the presence of high salt. With the exception of Y365A, all mutant enzymes did not have the ability to bind fluoride, chloride and nitrate anions. Structural analyses showed that the circular dichroism spectra of the mutant proteins were consistent with those of BlTreA. However, wild-type and mutant enzymes displayed a slight difference in the profiles of intrinsic tryptophan fluorescence. Collectively, these results clearly indicate that Arg201 and Agr327 residues might play an essential role in chloride binding of BlTreA.

Keywords: Bacillus licheniformis; trehalose-6-phosphate hydrolase; site-directed mutagenesis; chloride binding; arginine

  • [1] Aghajari N., Feller G., Gerday C. & Haser R. 1998. Crystal structure of the psychrophilic α-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Protein Sci. 7: 564–572. http://dx.doi.org/10.1002/pro.5560070304CrossrefGoogle Scholar

  • [2] Aghajari N., Feller G., Gerday C. & Haser R. 2002. Structural basis of α-amylase activation by chloride. Protein Sci. 11: 1435–1441. http://dx.doi.org/10.1110/ps.0202602CrossrefGoogle Scholar

  • [3] Boel E., Brady L., Brzozowsi A.M., Derewenda Z., Dodson G.G., Jensen V.J., Petersen S.B., Swift H., Thim L. & Woldike H.F. 1990. Calcium binding in α-amylases: an X-ray diffraction study at 2.1-Å resolution of two enzymes from Aspergillus. Biochemistry 29: 6244–6249. http://dx.doi.org/10.1021/bi00478a019CrossrefGoogle Scholar

  • [4] Brady R.L., Brzozowski A.M., Derewenda Z.S., Dodson E.J. & Dodson G.G. 1991. Solution of the structure of Aspergillus niger acid α-amylase by combined molecular replacement and multiple isomorphous replacement methods. Acta Crystallogr. B47: 527–535. Google Scholar

  • [5] Brayer G.D., Luo Y. & Withers S.G. 1995. The structure of human pancreatic α-amylase at 1.8 Å resolution and comparisons with related enzymes. Protein Sci. 4: 1730–1742. http://dx.doi.org/10.1002/pro.5560040908CrossrefGoogle Scholar

  • [6] Chuang T.T., Ong P.L., Wang T.F., Huang H.B., Chi M.C. & Lin L.L. 2012. Molecular characterization of a novel trehalose-6-phosphate hydrolase, TreA, from Bacillus licheniformis. Int. J. Biol. Macromol. 50: 459–470. http://dx.doi.org/10.1016/j.ijbiomac.2012.01.011Web of ScienceCrossrefGoogle Scholar

  • [7] D’Amico S., Gerday C. & Feller G. 2000. Structural similarities and evolutionary relationships in chloride-dependent α-amylases. Gene 253: 95–105. http://dx.doi.org/10.1016/S0378-1119(00)00229-8CrossrefGoogle Scholar

  • [8] Greenfield N.J. 2004. Analysis of circular dichroism data. Methods Enzymol. 383: 282–317. http://dx.doi.org/10.1016/S0076-6879(04)83012-XCrossrefGoogle Scholar

  • [9] Feller G., le Bussy O., Houssier C. & Gerday C. 1996. Structural and functional aspects of chloride binding to Alteromonas haloplanctis α-amylase. J. Biol. Chem. 271: 23836–23841. http://dx.doi.org/10.1074/jbc.271.39.23836CrossrefGoogle Scholar

  • [10] Feller G., Lonhieme T., Deroanne C., Libioulle C., van Beeumen J. & Gerday C. 1992. Purification, characterization, and nucleotide sequence of the thermolabile α-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23. J. Biol. Chem. 267: 5217–5221. Google Scholar

  • [11] Feller G., Payan F., Theys F., Qian M., Haser R. & Gerday C. 1994. Stability and structural analysis of α-amylase from the Antarctic psychrophilic Altermonas haloplanctis A23. Eur. J. Biochem. 222: 441–447. http://dx.doi.org/10.1111/j.1432-1033.1994.tb18883.xCrossrefGoogle Scholar

  • [12] Henrissat B. 1991. A classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochem. J. 280: 309–316. Google Scholar

  • [13] Henrissat B. & Bairoch A. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316: 695–696. Google Scholar

  • [14] Janeček Š. 1994. Parallel β/α-barrels of α-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of β-amylase: evolutionary distance is a reflection of unrelated sequences. FEBS Lett. 353: 119–123. http://dx.doi.org/10.1016/0014-5793(94)01019-6CrossrefGoogle Scholar

  • [15] Janeček Š. 1995. Close evolutionary relatedness among functionally distantly related members of the (β/α)8-barrel glycosyl hydrolases suggested by the similarity of their fifth conserved sequence region. FEBS Lett. 377: 6–8. http://dx.doi.org/10.1016/0014-5793(95)01309-1Google Scholar

  • [16] Jespersen H.M., MacGregor E.A., Henrissat B., Sierks M.R. & Svensson B. 1993. Starch- and glycogen-debranching and branching enzymes: prediction of structural features of the catalytic (β/α)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J. Protein Chem. 12: 791–805. http://dx.doi.org/10.1007/BF01024938CrossrefGoogle Scholar

  • [17] Kadziola A., Abe J., Svensson B. & Haser R. 1994. Crystal and molecular structure of barley α-amylase. J. Mol. Biol. 239: 104–121. http://dx.doi.org/10.1006/jmbi.1994.1354CrossrefGoogle Scholar

  • [18] Kizaki H., Hata Y., Watanabe K., Katsube Y. & Suzuki Y. 1993. Polypeptide folding of Bacillus cereus ATCC7064 oligo-1,6-glucosidase revealed by 3.0 Å resolution X-ray analysis. J. Biochem. 113: 646–649. Google Scholar

  • [19] Klein C. & Schulz G.E. 1991. Structure of cyclodextrin glycosyltransferase refined at 2.0 Å resolution. J. Mol. Biol. 217: 737–750. http://dx.doi.org/10.1016/0022-2836(91)90530-JCrossrefGoogle Scholar

  • [20] Knegtel R.M.A., Wind R.D., Rozeboom H.J., Kalk K.H., Buitelaar R.M., Dijkhuizen L. & Dijkstra B.W. 1996. Crystal structure at 2.3 Å resolution and revised nucleotide sequence of the thermostable cylodextrin glycosyltransferase from Themoanaerobacterium thermosulfurigenes EM1. J. Mol. Biol. 256: 611–622. http://dx.doi.org/10.1006/jmbi.1996.0113CrossrefGoogle Scholar

  • [21] Kubota M., Matsuura Y., Sakai S. & Katsube Y. 1991. Molecular structure of B. stearothermophilus cyclodextrin glucanotransferase and analysis of substrate binding site. Denpun Kagaku 38: 141–146. Google Scholar

  • [22] Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685. http://dx.doi.org/10.1038/227680a0CrossrefGoogle Scholar

  • [23] Larson S.B., Greenwood A., Cascio D., Day J. & McPherson A. 1994. Refined molecular structure of pig pancreatic α-amylase at 2.1 Å resolution. J. Mol. Biol. 235: 1560–1584. http://dx.doi.org/10.1006/jmbi.1994.1107CrossrefGoogle Scholar

  • [24] Lawson C.L., van Montfort R., Strokopytov B., Rozeboom H.J., Kalk K.H., de Vries G.E., Penninga D., Dijkhuizen L. & Dijkstra B.W. 1994. Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose dependent crystal form. J. Mol. Biol. 236: 590–600. http://dx.doi.org/10.1006/jmbi.1994.1168CrossrefGoogle Scholar

  • [25] Lin M.G., Liang W.C., Chen B.E., Chou W.M. & Lin L.L. 2011. Involvement of residues Asp8, Asn13, Glu145, Asp168, and Thr173 in the chaperone activity of a recombinant DnaK from Bacillus licheniformis. J. Mol. Microbiol. Biotechnol. 20: 29–42. http://dx.doi.org/10.1159/000322917CrossrefGoogle Scholar

  • [26] McCarter J.D. & Withers S.G. 1994. Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 4: 885–892. http://dx.doi.org/10.1016/0959-440X(94)90271-2CrossrefGoogle Scholar

  • [27] MacGregor E.A. 1993. Relationships between structure and activity in the α-amylase family of starch-metabolising enzymes. Starch/Stärke 7: 232–237. http://dx.doi.org/10.1002/star.19930450705CrossrefGoogle Scholar

  • [28] Machius M., Wiegand G. & Huber R. 1995. Crystal structure of calcium depleted Bacillus licheniformis α-amylase at 2.2 Å resolution. J. Mol. Biol. 246: 545–559. http://dx.doi.org/10.1006/jmbi.1994.0106CrossrefGoogle Scholar

  • [29] Mandel M. & Higa A. 1970. Calcium-dependent bacteriophage DNA infection. J. Mol. Biol. 53: 159–162. http://dx.doi.org/10.1016/0022-2836(70)90051-3CrossrefGoogle Scholar

  • [30] Matsuura Y., Kusunoki M., Harada W. & Kakudo M. 1984. Structure and possible catalytic residues of Taka-amylase A. J. Biochem. 95: 697–702. Google Scholar

  • [31] Qian M., Haser R., Buisson G., Duee E. & Payan F. 1994. The active center of a mammalian α-amylase: structure of the complex of a pancreatic α-amylase with a carbohydrate inhibitor refined to 2.2-Å resolution. Biochemistry 33: 6284–6294. http://dx.doi.org/10.1021/bi00186a031CrossrefGoogle Scholar

  • [32] Qian M., Haser R. & Payan F. 1993. Structure and molecular model refinement of pig pancreatic α-amylase at 2.1 Å resolution. J. Mol. Biol. 231: 785–799. http://dx.doi.org/10.1006/jmbi.1993.1326CrossrefGoogle Scholar

  • [33] Ramasubbu N., Paloth V., Luo Y., Brayer G.D. & Levine M.J. 1996. Structure of human salivary α-amylase at 1.6 Å resolution: implications for its role in the oral cavity. Acta Crystallogr. D52: 435–446. Google Scholar

  • [34] Rimmele M. & Boos W. 1994. Trehalose-6-phosphate hydrolase of Escherichia coli. J. Bacteriol. 176: 5654–5664. Google Scholar

  • [35] Royer C.A. 2006. Probing protein folding and conformational transitions with fluorescence. Chem. Rev. 106: 1769–1784. http://dx.doi.org/10.1021/cr0404390CrossrefGoogle Scholar

  • [36] Strobl S., Maskos K., Betz M., Wiegand G., Huber R., Gomis-Ruth F.X. & Glockshuber R. 1998. Crystal structure of yellow meal worm α-amylase at 1.64 Åresolution. J. Mol. Biol. 278: 617–628. http://dx.doi.org/10.1006/jmbi.1998.1667Google Scholar

  • [37] Strokopytov B., Penninga D., Rozeboom H.J., Kalk K.H., Dijkuizen L. & Dijkstra B.W. 1995. X-ray structure of cyclodextrin glycosyltransferase complexed with acarbose: implications for the catalytic mechanism of glycosidases. Biochemistry 34: 2234–2240. http://dx.doi.org/10.1021/bi00007a018CrossrefGoogle Scholar

  • [38] Svensson B. 1994. Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol. Biol. 25: 141–157. http://dx.doi.org/10.1007/BF00023233CrossrefGoogle Scholar

  • [39] Watanabe K., Hata Y., Kizaki H., Katsube Y. & Suzuki Y. 1997. The refined structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 Å: structural characterization of proline-substituted sites for protein stabilization. J. Mol. Biol. 269: 142–153. http://dx.doi.org/10.1006/jmbi.1997.1018Google Scholar

About the article

Published Online: 2013-11-15

Published in Print: 2014-01-01


Citation Information: Biologia, Volume 69, Issue 1, Pages 1–9, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-013-0290-3.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Min-Guan Lin, Meng-Chun Chi, Vankadari Naveen, Yi-Ching Li, Long-Liu Lin, and Chwan-Deng Hsiao
Acta Crystallographica Section D Structural Biology, 2016, Volume 72, Number 1, Page 59
[2]
Riaz Ur Rehman, Muhammad Zia, Bilal Haider Abbasi, Gang Lu, and Muhammad Fayyaz Chaudhary
Applied Biochemistry and Biotechnology, 2014, Volume 173, Number 4, Page 968

Comments (0)

Please log in or register to comment.
Log in