Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 1

Issues

Study of electron-dense thylakoids in chloroplasts of Stevia rebaudiana Bertoni in relation to the biosynthesis of diterpenoids

Nikolai Bondarev
  • K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
  • State University — Education-Science-Production Complex, Orel, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dmitrii Kurilov / Tatyana Bondareva / Andrei Stomakhin / Alexander Nosov
  • K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
  • M.V. Lomonosov Moscow State University, Moscow, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-11-15 | DOI: https://doi.org/10.2478/s11756-013-0291-2

Abstract

Using transmission electronic microscopy and mass spectrometry electron-dense thylakoids of chloroplasts of Stevia rebaudiana leaves during active vegetable growth of this plant were studied in relation to the biosynthesis of diterpenoid glycosides (DGs). It was found that these compounds are absent in these thylakoids, but they contain a water-insoluble weakly polar ent-kauren, a known biosynthetic precursor of DGs as well as gibberellins. This finding provides a base for the suggestion that similar, electron-dense, thylakoids were observed earlier by other authors in other plant species. These data allowed us to conclude that an intensive biosynthesis of ent-kauren is likely related to adaptation of the short-day plants including Stevia rebaudiana to vegetable growth under the long day conditions.

Keywords: Stevia rebaudiana; content of diterpenoid glycosides; electron-dense thylakoids; ent-kauren; gibberellins

  • [1] Bondarev N.I., Reshetnyak O.V. & Nosov A.M. 2001. Peculiarities of diterpenoid steviol glycoside production in in vitro cultures Stevia rebaudia. Plant Sci. 161: 155–163. http://dx.doi.org/10.1016/S0168-9452(01)00400-9CrossrefGoogle Scholar

  • [2] Bondarev N.I., Reshetnyak O.V. & Nosov A.M. 2007. Features of growth of different clones of Stevia rebaudiana Bertoni plants and accumulation by them of steviol glycosides in vivo and in vitro. Biotechnologiya 1: 22–28. Google Scholar

  • [3] Bondarev N.I., Sukhanova M.A., Reshetnyak O.V. & Nosov A.M. 2004. Steviol glycoside content in different organs of Stevia rebaudiana Bertoni and its dynamics during ontogenesis. Biol. Plant. 47: 261–264. http://dx.doi.org/10.1023/B:BIOP.0000022261.35259.4fCrossrefGoogle Scholar

  • [4] Bondarev N.I., Sukhanova M.A., Semenova G.A., Goryaeva O.V., Andreeva S.E. & Nosov A.M. 2010. Morphology and ultrastructure of trichomes of intact and in vitro plants of Stevia rebaudiana Bertoni with reference to biosynthesis and accumulation of steviol glycosides, Moscow University Biol. Sci. Bull. 65: 12–16. Google Scholar

  • [5] Brandle J.E., Starratt A.N. & Gijzen M. 1998. Stevia rebaudiana: its agricultural, biological and chemical properties. Can. J. Plant Sci. 78: 527–536. http://dx.doi.org/10.4141/P97-114CrossrefGoogle Scholar

  • [6] Chalapathi M.K. 1997. Natural non-calorie sweetener stevia (Stevia rebaudiana Bertoni). Future crop for India. Crop Res. 14: 347–350. Google Scholar

  • [7] Danilova M.F. & Kashina T.K. 1999. Structural Bases of Actinorhytmic Regulation of Flowering. Nauka, Sankt-Petersburg, 218 pp. Google Scholar

  • [8] Davis E.M. & Croteau R. 2000. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Top. Curr. Chem. 209: 53–95. http://dx.doi.org/10.1007/3-540-48146-X_2CrossrefGoogle Scholar

  • [9] Kasahara H., Hanada A., Kuzuyama T., Takagi M., Kamiya Y. & Yamaguchi S. 2002. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J. Biol. Chem. 277: 45188–45194. http://dx.doi.org/10.1074/jbc.M208659200Web of ScienceCrossrefGoogle Scholar

  • [10] Kim K.K., Sawa Y. & Shibata H. 1996. Hydroxylation of entkaurenoic acid to steviol in Stevia rebaudiana Bertoni — purification and partial characterization of the enzyme. Arch. Bichem. Biophys. 332: 223–230. http://dx.doi.org/10.1006/abbi.1996.0336CrossrefGoogle Scholar

  • [11] Ladygin V.G., Bondarev N.I., Semenova G.A., Smolov A.P., Reshetnyak O.V. & Nosov A.M. 2008. Chloroplast ultrastructure, photosynthetic apparatus activities and production of steviol glycosides in Stevia rebaudiana in vivo and in vitro. Biol. Plant. 52: 9–16. http://dx.doi.org/10.1007/s10535-008-0002-yCrossrefWeb of ScienceGoogle Scholar

  • [12] Lichtenthaler H.K. 1998. The plants’ 1-deoxy-D-xylulose-5-phosphate pathway for biosynthesis of isoprenoids. Lipid /Fett 100: 128–138. http://dx.doi.org/10.1002/(SICI)1521-4133(19985)100:4/5<128::AID-LIPI128>3.0.CO;2-DCrossrefGoogle Scholar

  • [13] Lichtenthaler H.K., Rohmer M. & Schwender J. 1997. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plant. 101: 643–652. http://dx.doi.org/10.1111/j.1399-3054.1997.tb01049.xCrossrefGoogle Scholar

  • [14] Metivier J. & Viana A.M. 1979. The effect of long and short day length upon the growth of whole plants and the level of soluble proteins, sugars and stevioside in leaves of Stevia rebaudiana Bertoni. J. Exp. Bot. 30: 1211–1222. http://dx.doi.org/10.1093/jxb/30.6.1211CrossrefGoogle Scholar

  • [15] Okada K., Kawaide H., Kuzuyama T., Seto H., Curtis I.S. & Kamiya Y. 2002. Antisense and chemical suppression of the nonmevalonate pathway affects ent-kaurene biosynthesis in Arabidopsis. Planta 215: 339–344. http://dx.doi.org/10.1007/s00425-002-0762-0CrossrefGoogle Scholar

  • [16] Rohmer M. 1999. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plant. Nat. Prod. Rep. 16: 565–574. http://dx.doi.org/10.1039/a709175cCrossrefGoogle Scholar

  • [17] Semenova G.A. 1985. Electron-dense substance in potato leaf mesophyll cells. Russ. J. Plant Physiol. 32: 461–464. Google Scholar

  • [18] Semenova G.A. 2005. Electron opaque contents of thylakoids in chloroplasts of tansy Tanacetum vulgare L. Tsitologiya 47: 510–518. Google Scholar

  • [19] Soejarto D.D. 2002. Ethnobotany of Stevia and Stevia rebaudiana, pp. 40–67. In: Kinghorn A.D. (ed.), Stevia: The Genus Stevia, Taylor & Francis, London & New York. Google Scholar

  • [20] Stetler D.A. & Laetsch W.M. 1969. Chloroplast development in Nikotiana tabacum. Amer. J. Bot. 56: 260–270. http://dx.doi.org/10.2307/2440848CrossrefGoogle Scholar

  • [21] Stoyanova S., Geuns J., Hideg E. & Van den Ende W. 2011. The food additives inulin and stevioside counteract oxidative stress. Int. J. Food Sci. Nutr. 62: 207–214. http://dx.doi.org/10.3109/09637486.2010.523416Web of ScienceCrossrefGoogle Scholar

  • [22] Sukhanova M.A., Bondarev N.I., Goryaeva O.V., Andreeva S.E. & Nosov A.M. 2007. Ultrastructural characterization of cells and callus cultures of Stevia rebaudiana in relation to biosynthesis in them of steviol glycosides. Biotechnologiya 5: 51–59. Google Scholar

  • [23] Totte N., Charon L., Rohmer M., Compernolle F., Baboeuf I. & Geuns J.M.C. 2000. Biosynthesis of the diterpenoid steviol, an ent-kaurene derivative from Stevia rebaudiana Bertoni, via the methylerythritophosphate pathway. Tetrahedron Lett. 41: 6407–6410. http://dx.doi.org/10.1016/S0040-4039(00)01094-7CrossrefGoogle Scholar

  • [24] Van Steveninck M.E. & Van Steveninck R.F.M. 1980a. Plastids with densely staining thylakoid contents in Nymphoides indica. I. Plastid development. Protoplasma 103: 333–342. http://dx.doi.org/10.1007/BF01276960CrossrefGoogle Scholar

  • [25] Van Steveninck M.E. & Van Steveninck R.F.M. 1980b. Plastids with densely staining thylakoid contents in Nymphoides indica. II. Characterization of stainable substance. Protoplasma 103: 343–360. http://dx.doi.org/10.1007/BF01276961CrossrefGoogle Scholar

  • [26] Yakushkina N.I. & Bachtenko E.Y. 2004. Plant Physiology. Vlados, Moscow. Google Scholar

  • [27] Zaidan L.B.P., Dietrich S.M.C. & Felippe G.M. 1980. Effect of photoperiod on flowering and stevioside content in plants of Stevia rebaudiana Bertoni. Jap. J. Crop Sci. 49: 569–574. http://dx.doi.org/10.1626/jcs.49.569CrossrefGoogle Scholar

About the article

Published Online: 2013-11-15

Published in Print: 2014-01-01


Citation Information: Biologia, Volume 69, Issue 1, Pages 70–75, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-013-0291-2.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in