Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 1

Issues

Inoculation of the attenuated Coxsackievirus B3 Sabin3-like strain induces a protection against virulent CVB3 Nancy and CVB4 E2 strains in Swiss mice by both oral and intraperitoneal routes

Nadia Jrad-Battikh
  • Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives (LR 99-ES 27), Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir, 5000, Tunisie
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amira Souii
  • Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives (LR 99-ES 27), Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir, 5000, Tunisie
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rym Hadhri / Mahjoub Aouni
  • Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives (LR 99-ES 27), Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir, 5000, Tunisie
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jawhar Gharbi
  • Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives (LR 99-ES 27), Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir, 5000, Tunisie
  • Institut Supérieur de Biotechnologie de Monastir, Avenue Tahar Hadded, BP 74, Monastir, 5000, Tunisie
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Manel M’hadheb-Gharbi
  • Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives (LR 99-ES 27), Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir, 5000, Tunisie
  • Institut Supérieur de Biotechnologie de Monastir, Avenue Tahar Hadded, BP 74, Monastir, 5000, Tunisie
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-11-15 | DOI: https://doi.org/10.2478/s11756-013-0292-1

Abstract

We have previously addressed the question of whether the attenuating mutations of domain V of the Poliovirus IRES were specific for a given genomic context or whether they could be extrapolated to a genomic related virus, the Coxsackievirus B3 (CVB3). Accordingly, we have described that Sabin3-like mutation (U473→C) introduced in the CVB3 genome led to a defective mutant with a serious reduction in translation efficiency. In this study, we assessed the protection provided by the Sabin3-like mutant against CVB3 infection. For this purpose, we analyzed, in vivo, the Sabin3-like phenotype in Swiss mice inoculated with CVB3 and CVB4 E2 prototype strains either by oral or intraperitoneal (i.p) routes and explored the capacity of this mutant to act as a vaccine vector after the challenge. The Sabin3-like RNA was detected by semi-nested PCR in different organs: heart, pancreas and intestine at 10 days post-inoculation with both oral and i.p routes. Additionally, we did not observe any histological alterations in heart and intestine tissues. RNA was detected in the different organs of all mice immunized with the Sabin3-like strain and challenged with either CVB3 or CVB4 E2 by oral route at 7 days post-challenge. In contrast, no histological alteration of heart or pancreas tissues was observed after challenge with both wild-strains. Interestingly, the detection of viral RNA in heart, pancreas and intestine of mice immunized by i.p route was negative at 7 days post-challenge with CVB3 and CVB4 E2, and mice were protected from myocarditis and pancreatitis.

Keywords: Coxsackievirus B3; immunization; challenge; mice; vaccine

  • [1] Bailey J.M. & Tapprich W.E. 2007. Structure of the 5’ nontranslated region of the coxsackievirus B3 genome: chemical modi-fication and comparative sequence analysis. J. Virol. 81: 650–668. http://dx.doi.org/10.1128/JVI.01327-06Web of ScienceCrossrefGoogle Scholar

  • [2] Ben M’hadheb-Gharbi M., Gharbi J., Paulous S., Brocard M., Komaromva A., Aouni M. & Kean K. 2006. Effects of the Sabin-like mutations in domain V of the internal ribosome entry segment on translational efficiency of Coxsackievirus B3. Mol. Genet. Genomics 276: 402–412. http://dx.doi.org/10.1007/s00438-006-0155-3CrossrefGoogle Scholar

  • [3] Ben M’hadheb-Gharbi M., Paulous S., Aouni M., Kean K.M. & Gharbi J. 2007. The substitution U475→C with Sabin3-like mutation within the IRES attenuate Coxsackievirus B3 cardiovirulence. Mol. Biotechnol. 36: 52–60. http://dx.doi.org/10.1007/s12033-007-0019-zWeb of ScienceCrossrefGoogle Scholar

  • [4] Bhattacharyya S. & Das S. 2005. Mapping of secondary structure of the spacer region within the 5′-untranslated region of the coxsackievirus B3 RNA: possible role of an apical GAGA loop in binding La protein and influencing internal initiation of translation. Virus Res. 108: 89–100. http://dx.doi.org/10.1016/j.virusres.2004.08.020CrossrefGoogle Scholar

  • [5] Bopegamage S., Borsanyiova M., Vargova A., Petrovicova A., Benkovicova M. & Gomolcak P. 2003. Coxsackievirus infection of mice. I. Viral kinetics and histopathological changes in mice experimentally infected with coxsackieviruses B3 and B4 by oral route. Acta Virol. 47: 245–251. Google Scholar

  • [6] Bopegamage S., Kovacova J., Vargova A., Motusova J., Petrovicova A., Bencovicova M., Gomolacak P., Bakkers J., Van Kuppeveld F., Melchers W.J.G. & Galama J.M. 2005. Coxsackie B virus infection of mice: inoculation by oral route protects the pancreas from damage, but not from infection. J. Gen. Virol. 86: 3271–3280. http://dx.doi.org/10.1099/vir.0.81249-0CrossrefGoogle Scholar

  • [7] Chapman N.M., Ragland A., Smith L.J., Höfling K., Willian S., Semler B. & Tracy S. 2000. A group B Coxsackievirus/poliovirus 5’ nontranslated region chimera can act as an attenuated vaccine stain in mice. J. Virol. 74: 4047–4056. http://dx.doi.org/10.1128/JVI.74.9.4047-4056.2000Google Scholar

  • [8] Chomczynski P. & Sacchi N. 1987. Single-step RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159. http://dx.doi.org/10.1016/0003-2697(87)90021-2CrossrefGoogle Scholar

  • [9] Dunn J.J., Chapman N.M., Tracy S. & Romero J.R. 2000. Genomic determinants of cardiovirulence in coxsackievirus B3 clinical isolates: localization to the 5’ nontranslated region. J. Virol. 74: 4787–4794. http://dx.doi.org/10.1128/JVI.74.10.4787-4794.2000Google Scholar

  • [10] Fohlman J., Ilbäck N.G., Friman G. & Morein B. 1990. Vaccination of Balb/c mice against enteroviral mediated myocarditis. Vaccine 8: 381–384. http://dx.doi.org/10.1016/0264-410X(90)90098-7CrossrefGoogle Scholar

  • [11] Godney E.K., Arizpe H.M. & Gaunti C.J. 1988. Characterization of the antibody response in vaccinated mice protected against Coxsackievirus B3-induced myocarditis. Viral Immunol. 1: 305–314. http://dx.doi.org/10.1089/vim.1987.1.305CrossrefGoogle Scholar

  • [12] Henke A., Jarasch N., Martin U., Wegert J., Wildner A., Zell R. & Wutzler P. 2008. Recombinant coxsackievirus vectors for prevention and therapy of virus-induced heart disease. Int. J. Med. Microbiol. 298: 127–134. http://dx.doi.org/10.1016/j.ijmm.2007.08.010Web of ScienceCrossrefGoogle Scholar

  • [13] Henke A., Zell R. & Stelzner A. 2001. DNA vaccine-mediated immune responses in Coxsackievirus B3-infected mice. Antiviral Res. 49: 49–54. http://dx.doi.org/10.1016/S0166-3542(00)00132-7CrossrefGoogle Scholar

  • [14] Huber S. & Ramsingh A.I. 2004. Coxsackievirus-induced pancreatitis. Viral Immunol. 17: 358–369. http://dx.doi.org/10.1089/vim.2004.17.358CrossrefGoogle Scholar

  • [15] Jackson R.J. & Kaminski A. 1995. Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1: 985–1000. Google Scholar

  • [16] Jaidane H., Gharbi J., Lobert P.E., Lucas B., Hiar R., Ben M’hadheb M., Brilot F., Geenen V., Aouni M. & Hober D. 2006. Prolonged viral RNA detection in blood and lymphoid tissues from Coxsackievirus B4E2 orally-inoculated Swiss mice. Microbiol. Immunol. 50: 971–974. CrossrefGoogle Scholar

  • [17] Kawai C. 1999. From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death: learning from the past for the future. Circulation 99: 1091–1100. http://dx.doi.org/10.1161/01.CIR.99.8.1091CrossrefGoogle Scholar

  • [18] Kim D.S., Cho Y.J., Kim B.G., Lee S.H. & Nam J.H. 2009. Systematic analysis of attenuated Coxsackievirus expressing a foreign gene as a viral vaccine vector. Vaccine 28: 1234–1240. http://dx.doi.org/10.1016/j.vaccine.2009.11.017Web of ScienceCrossrefGoogle Scholar

  • [19] Kim J.Y., Jeon E.S., Lim B.K., Kim S.M., Chung S.K. & Kim J.M. 2005. Immunogenicity of a DNA vaccine for coxsackievirus B3 in mice: protective effects of capsid proteins against viral challenge. Vaccine 23: 1672–1679. http://dx.doi.org/10.1016/j.vaccine.2004.10.008CrossrefGoogle Scholar

  • [20] Klingel K., Hohenadl C., Canu A., Albrecht M., Seemannn M., Mall G. & Kandolf R. 1992. Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection, quantitative analysis of virus replication, tissue damage, and inflammation. Proc. Natl. Acad. Sci. USA 89: 314–318. http://dx.doi.org/10.1073/pnas.89.1.314CrossrefGoogle Scholar

  • [21] Knowlton K.U., Jeon E.S., Berkley N., Wessely R. & Huber S. 1996. A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of theWoodruff variant of coxsackievirus B3. J. Virol. 70: 7811–7818. Google Scholar

  • [22] Kong Q., Richter L., Yang Y.F., Arntzen C.J., Mason H.S. & Thanavala Y. 2001. Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc. Natl. Acad. Sci. USA 98: 11539–11544. http://dx.doi.org/10.1073/pnas.191617598CrossrefGoogle Scholar

  • [23] La Monica N. & Racaniello V.R. 1989. Differences in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SY5Y. J. Virol. 63: 2357–2560. Google Scholar

  • [24] Landau B.J., Whittier P.S., Finkelstein S.D., Alstein B., Grun J.B. & Schultz M. 1990. Induction of heterotypic virus resistance in adult inbred mice immunized with a variant of Coxsackievirus B3. Microb. Pathog. 8: 289–298. http://dx.doi.org/10.1016/0882-4010(90)90054-TCrossrefGoogle Scholar

  • [25] Leparc I., Fuchs F., Kopecka H. & Aymard M. 1993. Use of polymerase chain reaction with a murine model of picornavirusinduced myocarditis. J. Clin. Microbiol. 31: 2890–2894. Google Scholar

  • [26] Lim B.K., Shin J.O., Lee S.C., Kim D.K., Choi D.J. & Choe S.C. 2005. Long-term cardiac gene expression using a coxsackieviral vector. J. Mol. Cell. Cardiol. 38: 745–751. http://dx.doi.org/10.1016/j.yjmcc.2005.02.018CrossrefGoogle Scholar

  • [27] Maisch B., Ristic A.D., Hufnagel G. & Pankuweit S. 2002. Pathophysiology of viral myocarditis: the role of humoral immune response. Cardiovasc. Pathol. 11: 112–122. http://dx.doi.org/10.1016/S1054-8807(01)00113-2CrossrefGoogle Scholar

  • [28] Malnou C.E., Pöyry T.A., Jackson R.J. & Kean K.M. 2002. Poliovirus internal ribosome entry segment structure alterations that specifically affect function in neuronal cells: molecular genetic analysis. J. Virol. 76: 10617–10626. http://dx.doi.org/10.1128/JVI.76.21.10617-10626.2002CrossrefGoogle Scholar

  • [29] Mason H.S., Warzecha H., Mor T. & Arntzen C.J. 2002. Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol. Med. 8: 324–329. http://dx.doi.org/10.1016/S1471-4914(02)02360-2CrossrefGoogle Scholar

  • [30] Ouyang X., Zhang H., Trevor A.B. & Archard L.C. 1995. Detection of Coxsackievirus B3 RNA in mouse myocarditis by nested polymerase chain reaction. Clin. Diagn. Virol. 3: 233–245. http://dx.doi.org/10.1016/S0928-0197(94)00040-9CrossrefGoogle Scholar

  • [31] Reed L.J. & Muench H. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27: 493–497. Google Scholar

  • [32] Sabin A.B. 1985. Oral poliovirus vaccine: history of its development and use and current challenge to eliminate poliomyelitis from the world. J. Infect. Dis. 151: 420–436. http://dx.doi.org/10.1093/infdis/151.3.420CrossrefGoogle Scholar

  • [33] Sabin A.B. 1995. Oral poliovirus vaccine. History of its development and prospects for eradication of poliomyelitis. JAMA 194: 872–876. http://dx.doi.org/10.1001/jama.1965.03090210036010CrossrefGoogle Scholar

  • [34] Slifka M.K., Pagarigan R., Mena I., Feuer R. & Whitton J.L. 2001. Using recombinant coxsackievirus B3 to evaluate the induction and protective efficacy of CD8+ T cells during picornavirus infection. J. Virol. 75: 2377–2387. http://dx.doi.org/10.1128/JVI.75.5.2377-2387.2001CrossrefGoogle Scholar

  • [35] Souii A., Ben M’hadheb-Gharbi M., Sargueil B., Brossard A., Chamond N., Aouni M. & Gharbi J. 2013. Ribosomal initiation complex assembly within the wild-strain of Coxsackievirus B3 and live-attenuated Sabin3-like IRESes during the initiation of translation. Int. J. Mol. Sci. 14: 4400–4418. http://dx.doi.org/10.3390/ijms14034400CrossrefWeb of ScienceGoogle Scholar

  • [36] Svitkin Y.V., Cammack, N., Minor P.D. & Almon J.W. 1990. Translation deficiency of the Sabin type 3 poliovirus genome: association with an attenuating mutation C472-U. Virology 175: 103–109. http://dx.doi.org/10.1016/0042-6822(90)90190-3Google Scholar

  • [37] Tam P.E. 2006. Coxsackievirus myocarditis: interplay between virus and host in the pathogenesis of heart disease. Viral Immunol. 19: 133–146. http://dx.doi.org/10.1089/vim.2006.19.133CrossrefGoogle Scholar

  • [38] Tracy S., Chapman N.M. & Tu Z. 1992. Coxsackievirus B3 from an infectious cDNA copy of the genome is cardiovirulent in mice. Arch. Virol. 122: 399–409. http://dx.doi.org/10.1007/BF01317202CrossrefGoogle Scholar

  • [39] Tu Z., Chapman N.M., Hufnagel G., Tracy S., Romero J.R., Barry W.H., Zhao L., Currey K. & Shapiro B. 1995. The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5’ nontranslated region. J. Virol. 69: 4607–4618. Google Scholar

  • [40] Yoon J.W., Austin M., Onodera T. & Notkins A.L. 1979. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. New Engl. J. Med. 300: 1173–1179. http://dx.doi.org/10.1056/NEJM197905243002102CrossrefGoogle Scholar

  • [41] Zhang H., Morgan-Capner P., Latif N., Pandolfino Y.A., Fan W. & Dunn M.J. 1997. Coxsackievirus B3-induced myocarditis. Characterization of stable attenuated variants that protect against infection with the cardiovirulent wild-type strain. Am. J. Pathol. 150: 2197–2207. Google Scholar

About the article

Published Online: 2013-11-15

Published in Print: 2014-01-01


Citation Information: Biologia, Volume 69, Issue 1, Pages 113–121, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-013-0292-1.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in