Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 69, Issue 1


New lectins from aspergilli and their carbohydrate specificity

Ram Singh
  • Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147 002, Punjab, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hemant Kaur
  • Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147 002, Punjab, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jatinder Singh
Published Online: 2013-11-15 | DOI: https://doi.org/10.2478/s11756-013-0293-0


Lectin activity was assessed in sixteen Aspergillius species using human A, B, O, AB, rabbit, goat, pig and sheep erythrocytes. Neuraminidase and protease treated blood group O erythrocytes were also used to evaluate lectin activity from all the cultures unable to agglutinate native red blood cells. Lectin activity was revealed from Aspergillus acristatus, A. gorakhpurensis, A. panamensis and A. carbonarius extracts, while undiluted extract of A. fischeri showed weak haemagglutination. Lectin activity was expressed after 5 days of growth by A. acristatus, A. gorakhpurensis, A. panamensis and A. carbonarius and after 8 days of cultivation a sharp decline in lectin activity was observed. Higher titres were observed from these species with enzymatically modified blood type O erythrocytes. A variety of carbohydrates were used to study their minimum inhibitory concentration capable of inhibiting haemagglutination. Porcine stomach mucin was found to be the most potent inhibitor of all the lectins. A. gorakhpurensis lectin showed high specificity for chondroitin-6-sulphate and N-acetyl-D-galactosamine. Significant specificity for L-fucose, D-arabinose and 2-deoxy-D-ribose was identified with A. panamensis lectin. Low concentrations of 0.625 mM of D-galactosamine HCl and 0.12 mg/mL of chondroitin-6-sulphate were found optimal to prevent haemagglutination of A. carbonarius extract. A. carbonarius lectin was partially purified 2.75-fold using ammonium sulphate precipitation, dialysis and ultrafiltration. It was found to be stable upto 40°C and within the pH range of 7.0–8.0. Lectin activity was not affected by guanidine-HCl, while it was reduced to half after incubation with urea and thiourea after 24 h.

Keywords: Aspergillus; lectin; haemagglutination; carbohydrate specificity; partial purification; lectin characterization

  • [1] Albores S., Mora P., Cerdeiras M.P. & Fraguas L.F. 2013. Screening for lectins from basidiomycetes and isolation of Punctularia atropurpurascens lectin. J. Basic Microbiol. 53: 1–8. http://dx.doi.org/10.1002/jobm.201100335CrossrefWeb of ScienceGoogle Scholar

  • [2] Barak R., Elad Y., Mirelman D. & Chet I. 1985. Lectins: a possible basis for specific recognition in the interaction of Trichoderma and Sclerotium rolfsii. Phytopathology 75: 458–462. http://dx.doi.org/10.1094/Phyto-75-458CrossrefGoogle Scholar

  • [3] Bhowal J., Guha A.K. & Chatterjee B.P. 2005. Purification and molecular characterization of a sialic acid specific lectin from the phytopathogenic fungus Macrophomina phaseolina. Carbohydr. Res. 340: 1973–1982. http://dx.doi.org/10.1016/j.carres.2005.06.009CrossrefGoogle Scholar

  • [4] Cabanesa F.J., Accensi F., Bragulat M.R., Abarca M.L., Castella G., Minguez S. & Pons A. 2002. What is the source of ochratoxin A in wine? Int. J. Food Microbiol. 79: 213–215. http://dx.doi.org/10.1016/S0168-1605(02)00087-9CrossrefGoogle Scholar

  • [5] Chabasse D. & Robert R. 1986. Detection of lectin from Chrysosporium keratinophilum (Frey) Carmichael and Anixiopsis stercoraria (Hansen) Hansen by inhibition of haemagglutination. Ann. Inst. Pasteur Microbiol. 137B: 187–193. http://dx.doi.org/10.1016/S0769-2609(86)80107-7CrossrefGoogle Scholar

  • [6] Devitashvili E., Kopanadze E., Kachlishvili E., Khardziani T. & Elisashvili V. 2008. Evaluation of higher basidiomycetes mushroom lectin activity in submerged and solid-state fermentation of agro-industrial residues. Int. J. Med. Mushrooms 10: 171–179. http://dx.doi.org/10.1615/IntJMedMushr.v10.i2.80CrossrefWeb of ScienceGoogle Scholar

  • [7] Francis F., Jaber K., Colinet F., Portetelle D. & Haubruge E. 2011. Purification of a new fungal mannose-specific lectin from Penicillium chrysogenum and its aphidicidal properties. Fungal Biol. 115: 1093–1099. http://dx.doi.org/10.1016/j.funbio.2011.06.010CrossrefWeb of ScienceGoogle Scholar

  • [8] Han J.W., Yoon K.S., Jung M.G., Chah K.H. & Kim G.H. 2012. Molecular characterization of a lectin, BPL-4, from the marine green alga Bryopsis plumosa (Chlorophyta). Algae 27: 55–62. http://dx.doi.org/10.4490/algae.2012.27.1.055CrossrefWeb of ScienceGoogle Scholar

  • [9] Horibe M., Kobayashi Y., Dohra H., Morita T., Murata T., Usui T., Nakamura-Tsuruta S., Kamei M., Hirabayashi J., Matsuura M., Yamada M., Saikawa Y., Hashimoto K., Nakata M. & Kawagishi H. 2010. Toxic isolectins from the mushroom Boletus venenatus. Phytochemistry 71: 648–657. http://dx.doi.org/10.1016/j.phytochem.2009.12.003CrossrefWeb of ScienceGoogle Scholar

  • [10] Kawagishi H., Nomura A., Mizuno T., Kimura A. & Chiba S. 1990. Isolation and characterization of a lectin from Grifola frondosa fruiting bodies. Biochim. Biophys. Acta 1034: 247–252. http://dx.doi.org/10.1016/0304-4165(90)90045-XCrossrefGoogle Scholar

  • [11] Kawagishi H., Wasa T., Murata T., Usui T., Kimura A. & Chiba S. 1996. Two N-acetyl-D-galactosamine-specific lectins from Phaeolepiota aurea. Phytochemistry 41: 1013–1016. http://dx.doi.org/10.1016/0031-9422(95)00733-4CrossrefGoogle Scholar

  • [12] Kellens J.T.C. & Peumans W.J. 1991. Developmental accumulation of lectin in Rhizoctonia solani: a potential role as a storage protein. J. Gen. Microbiol. 136: 2489–2495. Google Scholar

  • [13] Khan F., Ahmad A. & Khan M.I. 2007. Purification and characterization of a lectin from endophytic fungus Fusarium solani having complex sugar specificity. Arch. Biochem. Biophys. 457: 243–251. http://dx.doi.org/10.1016/j.abb.2006.10.019CrossrefGoogle Scholar

  • [14] Khan F. & Khan M.I. 2011. Fungal lectins: current molecular and biochemical perspectives. Int. J. Biol. Chem. 5: 1–20. http://dx.doi.org/10.3923/ijbc.2011.1.20CrossrefGoogle Scholar

  • [15] Kobayashi Y., Kobayashi K., Umehara K., Dohra H., Murata T., Usui T. & Kawagishi H. 2004. Purification, characterization, and sugar binding specificity of an N-glycolylneuraminic acidspecific lectin from the mushroom Chlorophyllum molybdites. J. Biol. Chem. 279: 53048–53055. http://dx.doi.org/10.1074/jbc.M407997200CrossrefGoogle Scholar

  • [16] Liu Q., Wang H. & Ng T.B. 2006. First report of a xylosespecific lectin with potent hemagglutinating, antiproliferative and anti-mitogenic activities from a wild ascomycete mushroom. Biochim. Biophys. Acta 1760: 1914–1919. http://dx.doi.org/10.1016/j.bbagen.2006.07.010CrossrefGoogle Scholar

  • [17] Lowry O.H., Rosebrough N.J., Farr A.L. & Randall R.J. 1951. Protein estimation with folin-phenol reagent. J. Biol. Chem. 193: 265–275. Google Scholar

  • [18] Matsumara K., Higashida K., Ishida H., Hata Y., Yamamoto K., Masaki S., Mizuno-Horikwa Y., Wang X., Miyoshi E., Gu J. & Tanigushi N. 2007. Carbohydrate binding specificity of a fucose-specific lectin from Aspergillus oryzae: a novel probe for core fucose. J. Biol. Chem. 282: 15700–15708. http://dx.doi.org/10.1074/jbc.M701195200CrossrefWeb of ScienceGoogle Scholar

  • [19] Mikiashvili N.A., Elisashvili V.I., Wasser S.P. & Nevo E. 2006. Comparative study of lectin activity of higher basidiomycetes. Int. J. Med. Mushrooms 8: 31–38. http://dx.doi.org/10.1615/IntJMedMushr.v8.i1.30Web of ScienceCrossrefGoogle Scholar

  • [20] Mwafaida J.M., Kobayashi Y., Kawagishi H. & Hyakumachi M. 2004. Lectin variation in members of Rhizoctonia species. Microbes Environ. 19: 227–235. http://dx.doi.org/10.1264/jsme2.19.227CrossrefGoogle Scholar

  • [21] Oguri S., Ando A. & Nagata Y. 1996. A novel developmental stage-specific lectin of the basidiomycete Pleurotus cornucopiae. J. Bacteriol. 178: 5692–5698. Google Scholar

  • [22] Otta Y., Amano K., Nishiyama K., Ando A., Ogawa S. & Nagata Y. 2002. Purification and properties of a lectin from ascomycete mushroom, Ciborinia camelliae. Carbohydr. Res. 340: 1973–1982. Google Scholar

  • [23] Pajic I.I., Kljajic Z.Z., Dogovic N.N., Sladic D.D., Juranic Z.Z. & Gasic M.J. 2002. A novel lectin from the sponge Haliclona cratera: isolation, characterization and biological activity. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 132: 213–221. http://dx.doi.org/10.1016/S1532-0456(02)00068-6CrossrefGoogle Scholar

  • [24] Rosen S., Ek B., Rask L. & Tunlid A. 1992. Purification and characterization of a surface lectin from the nematode-trapping fungus Arthrobotrys oligospora. J. Gen. Microbiol. 138: 2663–2672. http://dx.doi.org/10.1099/00221287-138-12-2663CrossrefGoogle Scholar

  • [25] Rouf R., Tiralongo E., Krahl A., Maes K., Spaan L., Wolf S., May T.W. & Tiralongo J. 2011. Comparative study of haemagglutination and lectin activity in Australian medicinal mushrooms. Int. J. Med. Mushrooms 13: 493–504. http://dx.doi.org/10.1615/IntJMedMushr.v13.i6.10Web of ScienceCrossrefGoogle Scholar

  • [26] Shimokawa M., Fukudome A., Yamashita R., Minami Y., Yagi F., Tateno H. & Hirabayashi J. 2012. Characterization and cloning of GNA-like lectin from the mushroom Marasmius oreades. Glycoconj. J. 29: 457–465. http://dx.doi.org/10.1007/s10719-012-9401-6CrossrefWeb of ScienceGoogle Scholar

  • [27] Singh R.S., Bhari R. & Kaur H.P. 2010a. Mushroom lectins: current status and future perspectives. Crit. Rev. Biotechnol. 30: 99–126. http://dx.doi.org/10.3109/07388550903365048Web of ScienceCrossrefGoogle Scholar

  • [28] Singh R.S., Bhari R. & Kaur H.P. 2011a. Current trends of lectins from microfungi. Crit. Rev. Biotechnol. 31: 193–210. http://dx.doi.org/10.3109/07388551.2010.505911CrossrefWeb of ScienceGoogle Scholar

  • [29] Singh R.S., Bhari R., Kaur H.P. & Vig M. 2010d. Purification and characterization of a novel thermostable mycelial lectin from Aspergillus terricola. Appl. Biochem. Biotechnol. 162:1339–1349. http://dx.doi.org/10.1007/s12010-009-8906-3CrossrefGoogle Scholar

  • [30] Singh R.S., Bhari R. & Rai J. 2010b. Further screening of Aspergillus species for occurrence of lectins and their partial characterization. J. Basic Microbiol. 50: 90–97. http://dx.doi.org/10.1002/jobm.200900299CrossrefGoogle Scholar

  • [31] Singh R.S., Bhari R., Rana V. & Tiwary A.K. 2011b. Immunomodulatory and therapeutic potential of a mycelial lectin from Aspergillus nidulans. Appl. Biochem. Biotechnol. 165: 624–638. http://dx.doi.org/10.1007/s12010-011-9281-4CrossrefWeb of ScienceGoogle Scholar

  • [32] Singh R.S., Bhari R., Singh J. & Tiwary A.K. 2011c. Purification and characterization of a mucin-binding mycelia lectin from Aspergillus nidulans with potent mitogenic activity. World J. Microbiol. Biotechnol. 27: 547–554. http://dx.doi.org/10.1007/s11274-010-0488-2CrossrefGoogle Scholar

  • [33] Singh R.S., Bhari R. & Tiwary A.K. 2010c. Optimization of culture conditions, partial purification and characterization of a new lectin from Aspergillus nidulans. Romanian Biotechnol. Lett. 15: 4990–4999. Google Scholar

  • [34] Singh R.S., Sharma S., Kaur G. & Bhari R. 2009a. Screening of Penicillium species for occurrence of lectins and their characterization. J. Basic Microbiol. 49: 471–476. http://dx.doi.org/10.1002/jobm.200800282CrossrefGoogle Scholar

  • [35] Singh R.S., Thakur G. & Bhari R. 2009b. Optimization of culture conditions and characterization of a new lectin from Aspergillus niger. Indian J. Microbiol. 49: 219–222. http://dx.doi.org/10.1007/s12088-009-0041-xCrossrefGoogle Scholar

  • [36] Singh R.S., Tiwary A.K. & Bhari R. 2008. Screening of Aspergillus species for occurrence of lectins and their characterization. J. Basic Microbiol. 48: 112–117. http://dx.doi.org/10.1002/jobm.200700314CrossrefGoogle Scholar

  • [37] Suzuki T., Sugiyama K., Hirai H., Ito H., Morita T., Dohra H., Murata T., Usui T., Tateno H., Hirabayashi J., Kobayashi Y. & Kawagishi H. 2012. Mannose-specific lectin from the mushroom Hygrophorus russula. Glycobiology 22: 616–629. http://dx.doi.org/10.1093/glycob/cwr187Web of ScienceCrossrefGoogle Scholar

  • [38] Swamy B.M., Bhat A.G., Hegde G.V., Naik R.S., Kulkarni S. & Inamdar S.R. 2004. Immunolocalization and functional role of Sclerotium rolfsii lectin in development of fungus by interaction with its endogenous receptor. Glycobiology 14: 951–957. http://dx.doi.org/10.1093/glycob/cwh130CrossrefGoogle Scholar

  • [39] Swamy B.M., Hegde G.V., Naik R.S. & Inamdar S.R. 1999. Sclerotium rolfsii lectin recognizes Galβ1,3GalNAc containing glycopeptides. INTERLEC 18, University of Portsmouth, Portsmouth, UK, July 27–31, abstract. Google Scholar

  • [40] Tronchin G., Ensault K., Sanchez M., Larcher G., Leblond A.M. & Philippe J. 2002. Purification and partial characterization of a 32-kilodalton sialic acid specific lectin from Aspergillus fumigatus. Infect. Immun. 70: 6891–6895. http://dx.doi.org/10.1128/IAI.70.12.6891-6895.2002CrossrefGoogle Scholar

  • [41] Wang H. & Ng T.B. 2005. First report of an arabinose-specific fungal lectin. Biochem. Biophys. Res. Commun. 337: 621–625. http://dx.doi.org/10.1016/j.bbrc.2005.09.096CrossrefGoogle Scholar

About the article

Published Online: 2013-11-15

Published in Print: 2014-01-01

Citation Information: Biologia, Volume 69, Issue 1, Pages 15–23, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-013-0293-0.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ram S. Singh and Amandeep K. Walia
Biologia, 2016, Volume 71, Number 4

Comments (0)

Please log in or register to comment.
Log in